1brc/src/main/java/dev/morling/onebrc/CalculateAverage_royvanrijn.java

322 lines
12 KiB
Java
Raw Normal View History

/*
* Copyright 2023 The original authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dev.morling.onebrc;
import java.io.IOException;
import java.lang.foreign.Arena;
import java.lang.reflect.Field;
import java.nio.ByteOrder;
import java.nio.channels.FileChannel;
import java.nio.file.Path;
import java.nio.file.StandardOpenOption;
import java.util.Arrays;
import java.util.Objects;
import java.util.TreeMap;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.util.stream.Stream;
import sun.misc.Unsafe;
/**
* Changelog:
*
* Initial submission: 62000 ms
* Chunked reader: 16000 ms
* Optimized parser: 13000 ms
* Branchless methods: 11000 ms
* Adding memory mapped files: 6500 ms (based on bjhara's submission)
* Skipping string creation: 4700 ms
* Custom hashmap... 4200 ms
* Added SWAR token checks: 3900 ms
* Skipped String creation: 3500 ms (idea from kgonia)
* Improved String skip: 3250 ms
* Segmenting files: 3150 ms (based on spullara's code)
* Not using SWAR for EOL: 2850 ms
* Inlining hash calculation: 2450 ms
* Replacing branchless code: 2200 ms (sometimes we need to kill the things we love)
* Added unsafe memory access: 1900 ms (keeping the long[] small and local)
*
* Best performing JVM on MacBook M2 Pro: 21.0.1-graal
* `sdk use java 21.0.1-graal`
*
*/
public class CalculateAverage_royvanrijn {
private static final String FILE = "./measurements.txt";
private static final Unsafe UNSAFE = initUnsafe();
private static final boolean isBigEndian = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN);
private static Unsafe initUnsafe() {
try {
Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");
theUnsafe.setAccessible(true);
return (Unsafe) theUnsafe.get(Unsafe.class);
}
catch (NoSuchFieldException | IllegalAccessException e) {
throw new RuntimeException(e);
}
}
public static void main(String[] args) throws Exception {
new CalculateAverage_royvanrijn().run();
}
public void run() throws Exception {
// Calculate input segments.
int numberOfChunks = Runtime.getRuntime().availableProcessors();
long[] chunks = getSegments(numberOfChunks);
// Parallel processing of segments.
TreeMap<String, Measurement> results = IntStream.range(0, chunks.length - 1)
.mapToObj(chunkIndex -> process(chunks[chunkIndex], chunks[chunkIndex + 1])).parallel()
.flatMap(MeasurementRepository::get)
.collect(Collectors.toMap(e -> e.city, MeasurementRepository.Entry::measurement, Measurement::updateWith, TreeMap::new));
System.out.println(results);
}
private static long[] getSegments(int numberOfChunks) throws IOException {
try (var fileChannel = FileChannel.open(Path.of(FILE), StandardOpenOption.READ)) {
long fileSize = fileChannel.size();
long segmentSize = (fileSize + numberOfChunks - 1) / numberOfChunks;
long[] chunks = new long[numberOfChunks + 1];
long mappedAddress = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fileSize, Arena.global()).address();
chunks[0] = mappedAddress;
long endAddress = mappedAddress + fileSize;
for (int i = 1; i < numberOfChunks; ++i) {
long chunkAddress = mappedAddress + i * segmentSize;
// Align to first row start.
while (chunkAddress < endAddress && UNSAFE.getByte(chunkAddress++) != '\n') {
// nop
}
chunks[i] = Math.min(chunkAddress, endAddress);
}
chunks[numberOfChunks] = endAddress;
return chunks;
}
}
private MeasurementRepository process(long fromAddress, long toAddress) {
MeasurementRepository repository = new MeasurementRepository();
long ptr = fromAddress;
long[] dataBuffer = new long[16];
while ((ptr = processEntity(dataBuffer, ptr, toAddress, repository)) < toAddress)
;
return repository;
}
private static final long SEPARATOR_PATTERN = compilePattern((byte) ';');
/**
* Already looping the longs here, lets shoehorn in making a hash
*/
private long processEntity(final long[] data, final long start, final long limit, final MeasurementRepository measurementRepository) {
int hash = 1;
long i;
int dataPtr = 0;
for (i = start; i <= limit - 8; i += 8) {
long word = UNSAFE.getLong(i);
if (isBigEndian) {
word = Long.reverseBytes(word); // Reversing the bytes is the cheapest way to do this
}
final long match = word ^ SEPARATOR_PATTERN;
long mask = ((match - 0x0101010101010101L) & ~match) & 0x8080808080808080L;
if (mask != 0) {
final long partialWord = word & ((mask >> 7) - 1);
hash = longHashStep(hash, partialWord);
data[dataPtr] = partialWord;
final int index = Long.numberOfTrailingZeros(mask) >> 3;
return process(start, i + index, hash, data, measurementRepository);
}
data[dataPtr++] = word;
hash = longHashStep(hash, word);
}
// Handle remaining bytes near the limit of the buffer:
long partialWord = 0;
int len = 0;
for (; i < limit; i++) {
byte read;
if ((read = UNSAFE.getByte(i)) == ';') {
hash = longHashStep(hash, partialWord);
data[dataPtr] = partialWord;
return process(start, i, hash, data, measurementRepository);
}
partialWord = partialWord | ((long) read << (len << 3));
len++;
}
return limit;
}
private static final long DOT_BITS = 0x10101000;
private static final long MAGIC_MULTIPLIER = (100 * 0x1000000 + 10 * 0x10000 + 1);
private long process(final long startAddress, final long delimiterAddress, final int hash, final long[] data, final MeasurementRepository measurementRepository) {
long word = UNSAFE.getLong(delimiterAddress + 1);
if (isBigEndian) {
word = Long.reverseBytes(word);
}
final long invWord = ~word;
final int decimalSepPos = Long.numberOfTrailingZeros(invWord & DOT_BITS);
final long signed = (invWord << 59) >> 63;
final long designMask = ~(signed & 0xFF);
final long digits = ((word & designMask) << (28 - decimalSepPos)) & 0x0F000F0F00L;
final long absValue = ((digits * MAGIC_MULTIPLIER) >>> 32) & 0x3FF;
final int measurement = (int) ((absValue ^ signed) - signed);
// Store:
measurementRepository.update(startAddress, data, (int) (delimiterAddress - startAddress), hash, measurement);
return delimiterAddress + (decimalSepPos >> 3) + 4; // Determine next start:
// return nextAddress;
}
static final class Measurement {
int min, max, count;
long sum;
public Measurement() {
this.min = 1000;
this.max = -1000;
}
public Measurement updateWith(int measurement) {
min = min(min, measurement);
max = max(max, measurement);
sum += measurement;
count++;
return this;
}
public Measurement updateWith(Measurement measurement) {
min = min(min, measurement.min);
max = max(max, measurement.max);
sum += measurement.sum;
count += measurement.count;
return this;
}
public String toString() {
return round(min) + "/" + round((1.0 * sum) / count) + "/" + round(max);
}
private double round(double value) {
return Math.round(value) / 10.0;
}
}
// branchless max (unprecise for large numbers, but good enough)
static int max(final int a, final int b) {
final int diff = a - b;
final int dsgn = diff >> 31;
return a - (diff & dsgn);
}
// branchless min (unprecise for large numbers, but good enough)
static int min(final int a, final int b) {
final int diff = a - b;
final int dsgn = diff >> 31;
return b + (diff & dsgn);
}
private static int longHashStep(final int hash, final long word) {
return 31 * hash + (int) (word ^ (word >>> 32));
}
private static long compilePattern(final byte value) {
return ((long) value << 56) | ((long) value << 48) | ((long) value << 40) | ((long) value << 32) |
((long) value << 24) | ((long) value << 16) | ((long) value << 8) | (long) value;
}
/**
* A normal Java HashMap does all these safety things like boundary checks... we don't need that, we need speeeed.
*
* So I've written an extremely simple linear probing hashmap that should work well enough.
*/
class MeasurementRepository {
private int tableSize = 1 << 20; // large enough for the contest.
private int tableMask = (tableSize - 1);
private MeasurementRepository.Entry[] table = new MeasurementRepository.Entry[tableSize];
record Entry(long address, long[] data, int length, int hash, String city, Measurement measurement) {
@Override
public String toString() {
return city + "=" + measurement;
}
}
public void update(long address, long[] data, int length, int hash, int temperature) {
int dataLength = length >> 3;
int index = hash & tableMask;
MeasurementRepository.Entry tableEntry;
while ((tableEntry = table[index]) != null
&& (tableEntry.hash != hash || tableEntry.length != length || !arrayEquals(tableEntry.data, data, dataLength))) { // search for the right spot
index = (index + 1) & tableMask;
}
if (tableEntry != null) {
tableEntry.measurement.updateWith(temperature);
return;
}
// --- This is a brand new entry, insert into the hashtable and do the extra calculations (once!) do slower calculations here.
Measurement measurement = new Measurement();
byte[] bytes = new byte[length];
for (int i = 0; i < length; i++) {
bytes[i] = UNSAFE.getByte(address + i);
}
String city = new String(bytes);
long[] dataCopy = new long[dataLength];
System.arraycopy(data, 0, dataCopy, 0, dataLength);
// And add entry:
MeasurementRepository.Entry toAdd = new MeasurementRepository.Entry(address, dataCopy, length, hash, city, measurement);
table[index] = toAdd;
toAdd.measurement.updateWith(temperature);
}
public Stream<MeasurementRepository.Entry> get() {
return Arrays.stream(table).filter(Objects::nonNull);
}
}
/**
* For case multiple hashes are equal (however unlikely) check the actual key (using longs)
*/
private boolean arrayEquals(final long[] a, final long[] b, final int length) {
for (int i = 0; i < length; i++) {
if (a[i] != b[i])
return false;
}
return true;
}
}