1brc/src/main/java/dev/morling/onebrc/CalculateAverage_royvanrijn.java

471 lines
19 KiB
Java
Raw Normal View History

/*
* Copyright 2023 The original authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dev.morling.onebrc;
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.channels.FileChannel;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.StandardOpenOption;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.TreeMap;
import java.util.stream.Collectors;
/**
* Changelog:
*
* Initial submission: 62000 ms
* Chunked reader: 16000 ms
* Optimized parser: 13000 ms
* Branchless methods: 11000 ms
* Adding memory mapped files: 6500 ms (based on bjhara's submission)
* Skipping string creation: 4700 ms
* Custom hashmap... 4200 ms
* Added SWAR token checks: 3900 ms
* Skipped String creation: 3500 ms (idea from kgonia)
* Improved String skip: 3250 ms
* Segmenting files: 3150 ms (based on spullara's code)
* Not using SWAR for EOL: 2850 ms
* Inlining hash calculation: 2450 ms
*
* Best performing JVM on MacBook M2 Pro: 21.0.1-graal
* `sdk use java 21.0.1-graal`
*
*/
public class CalculateAverage_royvanrijn {
private static final String FILE = "./measurements.txt";
// mutable state now instead of records, ugh, less instantiation.
static final class Measurement {
int min, max, count;
long sum;
public Measurement() {
this.min = 1000;
this.max = -1000;
}
public Measurement updateWith(int measurement) {
min = min(min, measurement);
max = max(max, measurement);
sum += measurement;
count++;
return this;
}
public Measurement updateWith(Measurement measurement) {
min = min(min, measurement.min);
max = max(max, measurement.max);
sum += measurement.sum;
count += measurement.count;
return this;
}
public String toString() {
return round(min) + "/" + round((1.0 * sum) / count) + "/" + round(max);
}
private double round(double value) {
return Math.round(value) / 10.0;
}
}
public static void main(String[] args) throws Exception {
new CalculateAverage_royvanrijn().run();
// new CalculateAverage_royvanrijn().runTests();
}
private void testInput(final String inputString, final int start, final boolean bigEndian, final int[] expectedDelimiterAndHash, final long[] expectedCityNameLong) {
byte[] input = inputString.getBytes(StandardCharsets.UTF_8);
ByteBuffer buffer = ByteBuffer.wrap(input).order(bigEndian ? ByteOrder.BIG_ENDIAN : ByteOrder.LITTLE_ENDIAN);
int[] output = new int[2];
long[] cityName = new long[128];
findNextDelimiterAndCalculateHash(buffer, SEPARATOR_PATTERN, start, buffer.limit(), output, cityName, bigEndian);
if (!Arrays.equals(output, expectedDelimiterAndHash)) {
System.out.println("Error in delimiter or hash");
System.out.println("Expected: " + Arrays.toString(expectedDelimiterAndHash));
System.out.println("Received: " + Arrays.toString(output));
}
int amountLong = 1 + ((output[0] - start) >>> 3);
if (!Arrays.equals(cityName, 0, amountLong, expectedCityNameLong, 0, amountLong)) {
System.out.println("Error in long array");
System.out.println("Expected: " + Arrays.toString(expectedCityNameLong));
System.out.println("Received: " + Arrays.toString(cityName));
}
}
private void run() throws Exception {
var results = getFileSegments(new File(FILE)).stream().map(segment -> {
long segmentEnd = segment.end();
try (var fileChannel = (FileChannel) Files.newByteChannel(Path.of(FILE), StandardOpenOption.READ)) {
var bb = fileChannel.map(FileChannel.MapMode.READ_ONLY, segment.start(), segmentEnd - segment.start());
// Work with any UTF-8 city name, up to 100 in length:
var buffer = new byte[106]; // 100 + ; + -XX.X + \n
var cityNameAsLongArray = new long[13]; // 13*8=104=kenough.
var delimiterPointerAndHash = new int[2];
// Calculate using native ordering (fastest?):
bb.order(ByteOrder.nativeOrder());
// Record the order it is and calculate accordingly:
final boolean bufferIsBigEndian = bb.order().equals(ByteOrder.BIG_ENDIAN);
MeasurementRepository measurements = new MeasurementRepository();
int startPointer;
int limit = bb.limit();
while ((startPointer = bb.position()) < limit) {
// SWAR method to find delimiter *and* record the cityname as long[] *and* calculate a hash:
findNextDelimiterAndCalculateHash(bb, SEPARATOR_PATTERN, startPointer, limit, delimiterPointerAndHash, cityNameAsLongArray, bufferIsBigEndian);
int delimiterPointer = delimiterPointerAndHash[0];
// Simple lookup is faster for '\n' (just three options)
int endPointer;
if (delimiterPointer >= limit) {
bb.position(limit); // skip to next line.
return measurements;
}
if (bb.get(delimiterPointer + 4) == '\n') {
endPointer = delimiterPointer + 4;
}
else if (bb.get(delimiterPointer + 5) == '\n') {
endPointer = delimiterPointer + 5;
}
else {
endPointer = delimiterPointer + 6;
}
// Read the entry in a single get():
bb.get(buffer, 0, endPointer - startPointer);
bb.position(endPointer + 1); // skip to next line.
// Extract the measurement value (10x):
final int cityNameLength = delimiterPointer - startPointer;
final int measuredValueLength = endPointer - delimiterPointer - 1;
final int measuredValue = branchlessParseInt(buffer, cityNameLength + 1, measuredValueLength);
// Store everything in a custom hashtable:
measurements.update(buffer, cityNameLength, delimiterPointerAndHash[1], cityNameAsLongArray).updateWith(measuredValue);
}
return measurements;
}
catch (IOException e) {
throw new RuntimeException(e);
}
}).parallel()
.flatMap(v -> v.values.stream())
.collect(Collectors.toMap(e -> e.cityName, MeasurementRepository.Entry::measurement, Measurement::updateWith, TreeMap::new));
System.out.println(results);
}
/**
* -------- This section contains SWAR code (SIMD Within A Register) which processes a bytebuffer as longs to find values:
*/
private static final long SEPARATOR_PATTERN = compilePattern((byte) ';');
private static final long[] PARTIAL_INDEX_MASKS = new long[]{ 0L, 255L, 65535L, 16777215L, 4294967295L, 1099511627775L, 281474976710655L, 72057594037927935L };
public void runTests() {
// Method used for debugging purposes, easy to make mistakes with all the bit hacking.
// These all have the same hashes:
testInput("Delft;-12.4", 0, true, new int[]{ 5, 1718384401 }, new long[]{ 499934586180L });
testInput("aDelft;-12.4", 1, true, new int[]{ 6, 1718384401 }, new long[]{ 499934586180L });
testInput("Delft;-12.4", 0, false, new int[]{ 5, 1718384401 }, new long[]{ 499934586180L });
testInput("aDelft;-12.4", 1, false, new int[]{ 6, 1718384401 }, new long[]{ 499934586180L });
testInput("Rotterdam;-12.4", 0, true, new int[]{ 9, -784321989 }, new long[]{ 7017859899421126482L, 109L });
testInput("abcdefghijklmnpoqrstuvwxyzRotterdam;-12.4", 26, true, new int[]{ 35, -784321989 }, new long[]{ 7017859899421126482L, 109L });
testInput("abcdefghijklmnpoqrstuvwxyzARotterdam;-12.4", 27, true, new int[]{ 36, -784321989 }, new long[]{ 7017859899421126482L, 109L });
testInput("Rotterdam;-12.4", 0, false, new int[]{ 9, -784321989 }, new long[]{ 7017859899421126482L, 109L });
testInput("abcdefghijklmnpoqrstuvwxyzRotterdam;-12.4", 26, false, new int[]{ 35, -784321989 }, new long[]{ 7017859899421126482L, 109L });
testInput("abcdefghijklmnpoqrstuvwxyzARotterdam;-12.4", 27, false, new int[]{ 36, -784321989 }, new long[]{ 7017859899421126482L, 109L });
// These have different hashes from the strings above:
testInput("abcdefghijklmnpoqrstuvwxyzAROtterdam;-12.4", 27, true, new int[]{ 36, -792194501 }, new long[]{ 7017859899421118290L, 109L });
testInput("abcdefghijklmnpoqrstuvwxyzAROtterdam;-12.4", 27, false, new int[]{ 36, -792194501 }, new long[]{ 7017859899421118290L, 109L });
MeasurementRepository repository = new MeasurementRepository();
// Simulate adding two entries with the same hash:
byte[] b1 = "City1;10.0".getBytes();
byte[] b2 = "City2;41.1".getBytes();
repository.update(b1, 5, 1234, new long[]{ 1234L });
repository.update(b2, 5, 1234, new long[]{ 4321L });
// And update the same record shouldn't add a third (this happened):
repository.update(b1, 5, 1234, new long[]{ 1234L });
if (repository.values.size() != 2) {
System.out.println("Error, should have two entries:");
System.out.println(repository.values);
}
MeasurementRepository.Entry firstInserted = repository.values.getFirst();
if (!firstInserted.cityName.equals("City1")) {
System.out.println("Error, should have correct name: " + firstInserted.cityName);
}
}
/**
* Already looping the longs here, lets shoehorn in making a hash
*/
private void findNextDelimiterAndCalculateHash(final ByteBuffer bb, final long pattern, final int start, final int limit, final int[] output,
final long[] asLong, final boolean bufferBigEndian) {
int hash = 1;
int i;
int lCnt = 0;
for (i = start; i <= limit - 8; i += 8) {
long word = bb.getLong(i);
if (bufferBigEndian)
word = Long.reverseBytes(word); // Reversing the bytes is the cheapest way to do this
int index = firstAnyPattern(word, pattern);
if (index < Long.BYTES) {
final long partialHash = word & PARTIAL_INDEX_MASKS[index];
asLong[lCnt] = partialHash;
hash = 961 * hash + 31 * (int) (partialHash >>> 32) + (int) partialHash;
output[0] = (i + index);
output[1] = hash;
return;
}
asLong[lCnt++] = word;
hash = 961 * hash + 31 * (int) (word >>> 32) + (int) word;
}
// Handle remaining bytes
long partialHash = 0;
for (; i < limit; i++) {
byte read;
if ((read = bb.get(i)) == (byte) pattern) {
asLong[lCnt] = partialHash;
hash = 961 * hash + 31 * (int) (partialHash >>> 32) + (int) partialHash;
output[0] = i;
output[1] = hash;
return;
}
partialHash = partialHash << 8 | read;
}
output[0] = limit; // delimiter not found
output[1] = hash;
}
private static long compilePattern(final byte value) {
return ((long) value << 56) | ((long) value << 48) | ((long) value << 40) | ((long) value << 32) |
((long) value << 24) | ((long) value << 16) | ((long) value << 8) | (long) value;
}
private static int firstAnyPattern(final long word, final long pattern) {
final long match = word ^ pattern;
long mask = match - 0x0101010101010101L;
mask &= ~match;
mask &= 0x8080808080808080L;
return Long.numberOfTrailingZeros(mask) >> 3;
}
record FileSegment(long start, long end) {
}
/** Using this way to segment the file is much prettier, from spullara */
private static List<FileSegment> getFileSegments(final File file) throws IOException {
final int numberOfSegments = Runtime.getRuntime().availableProcessors();
final long fileSize = file.length();
final long segmentSize = fileSize / numberOfSegments;
final List<FileSegment> segments = new ArrayList<>();
if (segmentSize < 1000) {
segments.add(new FileSegment(0, fileSize));
return segments;
}
try (RandomAccessFile randomAccessFile = new RandomAccessFile(file, "r")) {
for (int i = 0; i < numberOfSegments; i++) {
long segStart = i * segmentSize;
long segEnd = (i == numberOfSegments - 1) ? fileSize : segStart + segmentSize;
segStart = findSegment(i, 0, randomAccessFile, segStart, segEnd);
segEnd = findSegment(i, numberOfSegments - 1, randomAccessFile, segEnd, fileSize);
segments.add(new FileSegment(segStart, segEnd));
}
}
return segments;
}
private static long findSegment(final int i, final int skipSegment, RandomAccessFile raf, long location, final long fileSize) throws IOException {
if (i != skipSegment) {
raf.seek(location);
while (location < fileSize) {
location++;
if (raf.read() == '\n')
return location;
}
}
return location;
}
/**
* Branchless parser, goes from String to int (10x):
* "-1.2" to -12
* "40.1" to 401
* etc.
*
* @param input
* @return int value x10
*/
private static int branchlessParseInt(final byte[] input, final int start, final int length) {
// 0 if positive, 1 if negative
final int negative = ~(input[start] >> 4) & 1;
// 0 if nr length is 3, 1 if length is 4
final int has4 = ((length - negative) >> 2) & 1;
final int digit1 = input[start + negative] - '0';
final int digit2 = input[start + negative + has4];
final int digit3 = input[start + negative + has4 + 2];
return (-negative ^ (has4 * (digit1 * 100) + digit2 * 10 + digit3 - 528) - negative); // 528 == ('0' * 10 + '0')
}
// branchless max (unprecise for large numbers, but good enough)
static int max(final int a, final int b) {
final int diff = a - b;
final int dsgn = diff >> 31;
return a - (diff & dsgn);
}
// branchless min (unprecise for large numbers, but good enough)
static int min(final int a, final int b) {
final int diff = a - b;
final int dsgn = diff >> 31;
return b + (diff & dsgn);
}
/**
* A normal Java HashMap does all these safety things like boundary checks... we don't need that, we need speeeed.
*
* So I've written an extremely simple linear probing hashmap that should work well enough.
*/
class MeasurementRepository {
private int size = 16384;// 16384; // Much larger than the number of cities, needs power of two
private int[] indices = new int[size]; // Hashtable is just an int[]
MeasurementRepository() {
populateEmptyIndices(indices);
}
private void populateEmptyIndices(int[] array) {
// Optimized fill with -1, fastest method:
int len = array.length;
array[0] = -1;
// Value of i will be [1, 2, 4, 8, 16, 32, ..., len]
for (int i = 1; i < len; i += i) {
System.arraycopy(array, 0, array, i, i);
}
}
private final List<Entry> values = new ArrayList<>(512);
record Entry(int hash, long[] cityNameAsLong, String cityName, Measurement measurement) {
@Override
public String toString() {
return cityName + "=" + measurement;
}
}
public Measurement update(byte[] buffer, int length, int calculatedHash, long[] cityNameAsLongArray) {
final int cityNameAsLongLength = 1 + (length >>> 3); // amount of longs that captures this cityname
int hashtableIndex = (size - 1) & calculatedHash;
int valueIndex;
Entry retrievedEntry = null;
while (true) { // search for the right spot
if ((valueIndex = indices[hashtableIndex]) == -1) {
break; // Empty slot found, stop the loop
}
else {
// Non-empty slot, retrieve entry
if ((retrievedEntry = values.get(valueIndex)).hash == calculatedHash &&
arrayEquals(retrievedEntry.cityNameAsLong, cityNameAsLongArray, cityNameAsLongLength)) {
break; // Both hash and cityname match, stop the loop
}
}
// Move to the next index
hashtableIndex = (hashtableIndex + 1) % size;
}
if (valueIndex >= 0) {
return retrievedEntry.measurement;
}
// --- This is a brand new entry, insert into the hashtable and do the extra calculations (once!)
// Keep the already processed longs for fast equals:
long[] cityNameAsLongArrayCopy = new long[cityNameAsLongLength];
System.arraycopy(cityNameAsLongArray, 0, cityNameAsLongArrayCopy, 0, cityNameAsLongLength);
Entry toAdd = new Entry(calculatedHash, cityNameAsLongArrayCopy, new String(buffer, 0, length), new Measurement());
// Code to regrow (if we get more unique entries): (not needed/not optimized yet)
// if (values.size() > size / 2) {
// // We probably don't want this...
//
// int newSize = size << 1;
// int[] newIndices = new int[newSize];
// populateEmptyIndices(newIndices);
// for (int i = 0; i < values.size(); i++) {
// Entry e = values.get(i);
// int updatedIndex = (newSize - 1) & e.hash;
// newIndices[updatedIndex] = i;
// }
// indices = newIndices;
// size = newSize;
// }
indices[hashtableIndex] = values.size();
values.add(toAdd);
return toAdd.measurement;
}
}
/**
* For case multiple hashes are equal (however unlikely) check the actual key (using longs)
*/
private boolean arrayEquals(final long[] a, final long[] b, final int length) {
for (int i = 0; i < length; i++) {
if (a[i] != b[i])
return false;
}
return true;
}
}