Roy van Rijn: memory mapped files, branchless parsing, bitwiddle magic

Added SWAR (SIMD Within A Register) code to increase bytebuffer processing/throughput
Delaying the creation of the String by comparing hash, segmenting like spullara, improved EOL finding

Co-authored-by: Gunnar Morling <gunnar.morling@googlemail.com>
This commit is contained in:
Roy van Rijn 2024-01-03 20:44:24 +01:00 committed by GitHub
parent 0ba5cf33d4
commit 5570f1b60a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 290 additions and 40 deletions

View File

@ -16,5 +16,11 @@
#
JAVA_OPTS=""
# Added for fun, doesn't seem to be making a difference...
if [ -f "target/calculate_average_royvanrijn.jsa" ]; then
JAVA_OPTS="-XX:SharedArchiveFile=target/calculate_average_royvanrijn.jsa -Xshare:on"
else
# First run, create the archive:
JAVA_OPTS="-XX:ArchiveClassesAtExit=target/calculate_average_royvanrijn.jsa"
fi
time java $JAVA_OPTS --class-path target/average-1.0.0-SNAPSHOT.jar dev.morling.onebrc.CalculateAverage_royvanrijn

View File

@ -15,65 +15,309 @@
*/
package dev.morling.onebrc;
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.channels.FileChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.AbstractMap;
import java.util.Map;
import java.nio.file.StandardOpenOption;
import java.util.ArrayList;
import java.util.List;
import java.util.TreeMap;
import java.util.stream.Collectors;
/**
* Changelog:
*
* Initial submission: 62000 ms
* Chunked reader: 16000 ms
* Optimized parser: 13000 ms
* Branchless methods: 11000 ms
* Adding memory mapped files: 6500 ms (based on bjhara's submission)
* Skipping string creation: 4700 ms
* Custom hashmap... 4200 ms
* Added SWAR token checks: 3900 ms
* Skipped String creation: 3500 ms (idea from kgonia)
* Improved String skip: 3250 ms
* Segmenting files: 3150 ms (based on spullara's code)
* Not using SWAR for EOL: 2850 ms
*
* Best performing JVM on MacBook M2 Pro: 21.0.1-graal
* `sdk use java 21.0.1-graal`
*
*/
public class CalculateAverage_royvanrijn {
private static final String FILE = "./measurements.txt";
private record Measurement(double min, double max, double sum, long count) {
// mutable state now instead of records, ugh, less instantiation.
static final class Measurement {
int min, max, count;
long sum;
Measurement(double initialMeasurement) {
this(initialMeasurement, initialMeasurement, initialMeasurement, 1);
public Measurement() {
this.min = 10000;
this.max = -10000;
}
public static Measurement combineWith(Measurement m1, Measurement m2) {
return new Measurement(
m1.min < m2.min ? m1.min : m2.min,
m1.max > m2.max ? m1.max : m2.max,
m1.sum + m2.sum,
m1.count + m2.count
);
public Measurement updateWith(int measurement) {
min = min(min, measurement);
max = max(max, measurement);
sum += measurement;
count++;
return this;
}
public Measurement updateWith(Measurement measurement) {
min = min(min, measurement.min);
max = max(max, measurement.max);
sum += measurement.sum;
count += measurement.count;
return this;
}
public String toString() {
return round(min) + "/" + round(sum / count) + "/" + round(max);
return round(min) + "/" + round((1.0 * sum) / count) + "/" + round(max);
}
private double round(double value) {
return Math.round(value * 10.0) / 10.0;
return Math.round(value) / 10.0;
}
}
public static void main(String[] args) throws IOException {
// long before = System.currentTimeMillis();
Map<String, Measurement> resultMap = Files.lines(Path.of(FILE)).parallel()
.map(record -> {
// Map to <String,double>
int pivot = record.indexOf(";");
String key = record.substring(0, pivot);
double measured = Double.parseDouble(record.substring(pivot + 1));
return new AbstractMap.SimpleEntry<>(key, measured);
})
.collect(Collectors.toConcurrentMap(
// Combine/reduce:
AbstractMap.SimpleEntry::getKey,
entry -> new Measurement(entry.getValue()),
Measurement::combineWith));
System.out.print("{");
System.out.print(
resultMap.entrySet().stream().sorted(Map.Entry.comparingByKey()).map(Object::toString).collect(Collectors.joining(", ")));
System.out.println("}");
// System.out.println("Took: " + (System.currentTimeMillis() - before));
public static final void main(String[] args) throws Exception {
new CalculateAverage_royvanrijn().run();
}
private void run() throws Exception {
var results = getFileSegments(new File(FILE)).stream().map(segment -> {
long segmentEnd = segment.end();
try (var fileChannel = (FileChannel) Files.newByteChannel(Path.of(FILE), StandardOpenOption.READ)) {
var bb = fileChannel.map(FileChannel.MapMode.READ_ONLY, segment.start(), segmentEnd - segment.start());
var buffer = new byte[64];
// Force little endian:
bb.order(ByteOrder.LITTLE_ENDIAN);
BitTwiddledMap measurements = new BitTwiddledMap();
int startPointer;
int limit = bb.limit();
while ((startPointer = bb.position()) < limit) {
// SWAR is faster for ';'
int separatorPointer = findNextSWAR(bb, SEPARATOR_PATTERN, startPointer + 3, limit);
// Simple is faster for '\n' (just three options)
int endPointer;
if (bb.get(separatorPointer + 4) == '\n') {
endPointer = separatorPointer + 4;
}
else if (bb.get(separatorPointer + 5) == '\n') {
endPointer = separatorPointer + 5;
}
else {
endPointer = separatorPointer + 6;
}
// Read the entry in a single get():
bb.get(buffer, 0, endPointer - startPointer);
bb.position(endPointer + 1); // skip to next line.
// Extract the measurement value (10x):
final int nameLength = separatorPointer - startPointer;
final int valueLength = endPointer - separatorPointer - 1;
final int measured = branchlessParseInt(buffer, nameLength + 1, valueLength);
measurements.getOrCreate(buffer, nameLength).updateWith(measured);
}
return measurements;
}
catch (IOException e) {
throw new RuntimeException(e);
}
}).parallel().flatMap(v -> v.values.stream())
.collect(Collectors.toMap(e -> new String(e.key), BitTwiddledMap.Entry::measurement, (m1, m2) -> m1.updateWith(m2), TreeMap::new));
// Seems to perform better than actually using a TreeMap:
System.out.println(results);
}
/**
* -------- This section contains SWAR code (SIMD Within A Register) which processes a bytebuffer as longs to find values:
*/
private static final long SEPARATOR_PATTERN = compilePattern((byte) ';');
private int findNextSWAR(ByteBuffer bb, long pattern, int start, int limit) {
int i;
for (i = start; i <= limit - 8; i += 8) {
long word = bb.getLong(i);
int index = firstAnyPattern(word, pattern);
if (index < Long.BYTES) {
return i + index;
}
}
// Handle remaining bytes
for (; i < limit; i++) {
if (bb.get(i) == (byte) pattern) {
return i;
}
}
return limit; // delimiter not found
}
private static long compilePattern(byte value) {
return ((long) value << 56) | ((long) value << 48) | ((long) value << 40) | ((long) value << 32) |
((long) value << 24) | ((long) value << 16) | ((long) value << 8) | (long) value;
}
private static int firstAnyPattern(long word, long pattern) {
final long match = word ^ pattern;
long mask = match - 0x0101010101010101L;
mask &= ~match;
mask &= 0x8080808080808080L;
return Long.numberOfTrailingZeros(mask) >>> 3;
}
record FileSegment(long start, long end) {
}
/** Using this way to segment the file is much prettier, from spullara */
private static List<FileSegment> getFileSegments(File file) throws IOException {
final int numberOfSegments = Runtime.getRuntime().availableProcessors();
final long fileSize = file.length();
final long segmentSize = fileSize / numberOfSegments;
final List<FileSegment> segments = new ArrayList<>();
try (RandomAccessFile randomAccessFile = new RandomAccessFile(file, "r")) {
for (int i = 0; i < numberOfSegments; i++) {
long segStart = i * segmentSize;
long segEnd = (i == numberOfSegments - 1) ? fileSize : segStart + segmentSize;
segStart = findSegment(i, 0, randomAccessFile, segStart, segEnd);
segEnd = findSegment(i, numberOfSegments - 1, randomAccessFile, segEnd, fileSize);
segments.add(new FileSegment(segStart, segEnd));
}
}
return segments;
}
private static long findSegment(int i, int skipSegment, RandomAccessFile raf, long location, long fileSize) throws IOException {
if (i != skipSegment) {
raf.seek(location);
while (location < fileSize) {
location++;
if (raf.read() == '\n')
return location;
}
}
return location;
}
/**
* Branchless parser, goes from String to int (10x):
* "-1.2" to -12
* "40.1" to 401
* etc.
*
* @param input
* @return int value x10
*/
private static int branchlessParseInt(final byte[] input, int start, int length) {
// 0 if positive, 1 if negative
final int negative = ~(input[start] >> 4) & 1;
// 0 if nr length is 3, 1 if length is 4
final int has4 = ((length - negative) >> 2) & 1;
final int digit1 = input[start + negative] - '0';
final int digit2 = input[start + negative + has4];
final int digit3 = input[start + negative + has4 + 2];
return (-negative ^ (has4 * (digit1 * 100) + digit2 * 10 + digit3 - 528) - negative); // 528 == ('0' * 10 + '0')
}
// branchless max (unprecise for large numbers, but good enough)
static int max(final int a, final int b) {
final int diff = a - b;
final int dsgn = diff >> 31;
return a - (diff & dsgn);
}
// branchless min (unprecise for large numbers, but good enough)
static int min(final int a, final int b) {
final int diff = a - b;
final int dsgn = diff >> 31;
return b + (diff & dsgn);
}
/**
* A normal Java HashMap does all these safety things like boundary checks... we don't need that, we need speeeed.
*
* So I've written an extremely simple linear probing hashmap that should work well enough.
*/
class BitTwiddledMap {
private static final int SIZE = 16384; // A bit larger than the number of keys, needs power of two
private int[] indices = new int[SIZE]; // Hashtable is just an int[]
BitTwiddledMap() {
// Optimized fill with -1, fastest method:
int len = indices.length;
if (len > 0) {
indices[0] = -1;
}
// Value of i will be [1, 2, 4, 8, 16, 32, ..., len]
for (int i = 1; i < len; i += i) {
System.arraycopy(indices, 0, indices, i, i);
}
}
private List<Entry> values = new ArrayList<>(512);
record Entry(int hash, byte[] key, Measurement measurement) {
@Override
public String toString() {
return new String(key) + "=" + measurement;
}
}
/**
* Who needs methods like add(), merge(), compute() etc, we need one, getOrCreate.
* @param key
* @return
*/
public Measurement getOrCreate(byte[] key, int length) {
int inHash;
int index = (SIZE - 1) & (inHash = hashCode(key, length));
int valueIndex;
Entry retrievedEntry = null;
while ((valueIndex = indices[index]) != -1 && (retrievedEntry = values.get(valueIndex)).hash != inHash) {
index = (index + 1) % SIZE;
}
if (valueIndex >= 0) {
return retrievedEntry.measurement;
}
// New entry, insert into table and return.
indices[index] = values.size();
// Only parse this once:
byte[] actualKey = new byte[length];
System.arraycopy(key, 0, actualKey, 0, length);
Entry toAdd = new Entry(inHash, actualKey, new Measurement());
values.add(toAdd);
return toAdd.measurement;
}
private static int hashCode(byte[] a, int length) {
int result = 1;
for (int i = 0; i < length; i++) {
result = 31 * result + a[i];
}
return result;
}
}
}