My own solution -- memory mapping the files, running in parallel threads, using a state machine to parse the file (#466)

* Golang implementation

* Speed up by avoiding copying the lines

* Memory mapping

* Add script for testing

* Now passing most of the tests

* Refactor to composed method

* Now using integer math throughout

* Now using a state machine for parsing!

* Refactoring state names

* Enabling profiling

* Running in parallel!

* Fully parallel!

* Refactor

* Improve type safety of methods

* The rounding problem is due to difference between Javas and Gos printf implementation

* Converting my solution to Java

* Merging results

* Splitting the file in several buffers

* Made it parallel!

* Removed test file

* Removed go implementation

* Removed unused files

* Add header to .sh file

---------

Co-authored-by: Matteo Vaccari <mvaccari@thoughtworks.com>
This commit is contained in:
Matteo Vaccari 2024-01-17 21:26:19 +01:00 committed by GitHub
parent 08541525cd
commit aee71b961d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 281 additions and 0 deletions

20
calculate_average_xpmatteo.sh Executable file
View File

@ -0,0 +1,20 @@
#!/bin/sh
#
# Copyright 2023 The original authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
JAVA_OPTS="--enable-preview"
java $JAVA_OPTS --class-path target/average-1.0.0-SNAPSHOT.jar dev.morling.onebrc.CalculateAverage_xpmatteo

View File

@ -0,0 +1,261 @@
/*
* Copyright 2023 The original authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dev.morling.onebrc;
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;
import java.util.TreeMap;
import java.util.stream.Collectors;
@SuppressWarnings({ "ReassignedVariable", "StatementWithEmptyBody" })
public class CalculateAverage_xpmatteo {
private static final String FILE = "./measurements.txt";
public static void main(String[] args) throws IOException, InterruptedException {
var fileName = dataFileName(args);
try (
var file = new RandomAccessFile(new File(fileName), "r");
var channel = file.getChannel()) {
var numCpus = Runtime.getRuntime().availableProcessors();
var threads = split(channel, numCpus).stream()
.map(Worker::new)
.toList();
threads.forEach(Thread::start);
for (Worker thread : threads) {
thread.join();
}
var results = threads.stream().map(Worker::getResults)
.reduce(CalculateAverage_xpmatteo::merge)
.orElseThrow();
printCities(results);
}
}
public static class Worker extends Thread {
private final ByteBuffer buffer;
private Results results;
public Worker(ByteBuffer buffer) {
this.buffer = buffer;
}
@Override
public void run() {
this.results = parseData(this.buffer);
}
public Results getResults() {
return results;
}
}
protected static List<ByteBuffer> split(FileChannel channel, int numCpus) throws IOException {
if (channel.size() < 10_000) {
return List.of(channel.map(FileChannel.MapMode.READ_ONLY, 0, channel.size()));
}
long[] increments = new long[numCpus + 1];
for (int i = 0; i < numCpus; i++) {
increments[i] = i * channel.size() / numCpus;
// adjust the increments so that they start on the beginning of a city
while (increments[i] > 0 && byteAt(channel, increments[i] - 1) != '\n') {
increments[i]--;
}
}
increments[numCpus] = channel.size();
List<ByteBuffer> result = new ArrayList<>(numCpus);
for (int i = 0; i < numCpus; i++) {
long from = increments[i];
long to = increments[i + 1];
result.add(channel.map(FileChannel.MapMode.READ_ONLY, from, to - from));
}
return result;
}
private static byte byteAt(FileChannel channel, long offset) throws IOException {
ByteBuffer buf = ByteBuffer.allocate(1);
channel.position(offset);
channel.read(buf);
buf.flip();
var bytes = new byte[1];
buf.get(bytes);
return bytes[0];
}
public static String dataFileName(String[] args) {
if (args.length == 1) {
return args[0];
}
return FILE;
}
protected static byte[] readAllData(String fileName) throws IOException {
return Files.readAllBytes(Path.of(fileName));
}
protected static ByteBuffer memoryMap(String fileName) throws IOException {
try (RandomAccessFile file = new RandomAccessFile(new File(fileName), "r")) {
// Get file channel in read-only mode
FileChannel fileChannel = file.getChannel();
return fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fileChannel.size());
}
}
protected enum State {
PARSING_CITY_NAME,
SKIPPING_SEMICOLON,
PARSING_TEMPERATURE
}
protected static Results parseData(ByteBuffer data) {
var results = new Results();
var state = State.PARSING_CITY_NAME;
int cityStartOffset = 0, cityEndOffset = 0;
int temp = 0, sign = 0;
for (int i = 0; i < data.limit(); i++) {
byte currentChar = data.get();
if (state == State.PARSING_CITY_NAME && currentChar == ';') {
state = State.SKIPPING_SEMICOLON;
cityEndOffset = i;
}
else if (state == State.PARSING_CITY_NAME) {
// do nothing
}
else if (state == State.SKIPPING_SEMICOLON && currentChar == '-') {
state = State.PARSING_TEMPERATURE;
temp = 0;
sign = -1;
}
else if (state == State.SKIPPING_SEMICOLON && currentChar >= '0' && currentChar <= '9') {
state = State.PARSING_TEMPERATURE;
temp = currentChar - '0';
sign = 1;
}
else if (state == State.PARSING_TEMPERATURE && currentChar >= '0' && currentChar <= '9') {
temp = temp * 10 + currentChar - '0';
}
else if (state == State.PARSING_TEMPERATURE && currentChar == '.') {
// do nothing
}
else if (state == State.PARSING_TEMPERATURE && currentChar == '\n') {
byte[] bytes = new byte[cityEndOffset - cityStartOffset];
data.get(cityStartOffset, bytes);
var cityName = new String(bytes);
accumulate(results, cityName, temp * sign);
state = State.PARSING_CITY_NAME;
cityStartOffset = i + 1;
}
}
return results;
}
private static void accumulate(Results results, String cityName, int tempTimesTen) {
var existing = results.get(cityName);
if (existing == null) {
results.put(cityName, new CityData(tempTimesTen, tempTimesTen, tempTimesTen, 1));
}
else {
existing.min = Math.min(existing.min, tempTimesTen);
existing.sum = existing.sum + tempTimesTen;
existing.max = Math.max(existing.max, tempTimesTen);
existing.count++;
}
}
protected static Results merge(Results a, Results b) {
for (var entry : b.entrySet()) {
CityData valueInA = a.get(entry.getKey());
if (null == valueInA) {
a.put(entry.getKey(), entry.getValue());
}
else {
var valueInB = entry.getValue();
valueInA.min = Math.min(valueInA.min, valueInB.min);
valueInA.sum += valueInB.sum;
valueInA.max = Math.max(valueInA.max, valueInB.max);
valueInA.count += valueInB.count;
}
}
return a;
}
protected static class Results extends TreeMap<String, CityData> {
}
protected static class CityData {
int min, sum, max, count;
public CityData(int min, int sum, int max, int count) {
this.min = min;
this.sum = sum;
this.max = max;
this.count = count;
}
@Override
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
CityData cityData = (CityData) o;
return min == cityData.min && sum == cityData.sum && max == cityData.max && count == cityData.count;
}
@Override
public int hashCode() {
return Objects.hash(min, sum, max, count);
}
@Override
public String toString() {
return STR."CityData{min=\{min}, sum=\{sum}, max=\{max}, count=\{count}\{'}'}";
}
}
protected static void printCities(Results cities) {
System.out.print("{");
for (String city : cities.keySet()) {
CityData data = cities.get(city);
var min = data.min / 10.0;
var mean = (data.sum * 10.0 / data.count) / 100.0;
var max = data.max / 10.0;
System.out.printf(
"%s=%.1f/%.1f/%.1f, ",
city,
min,
mean,
max);
}
System.out.print("}");
}
}