serkan-ozal's 4th submission: (#645)

- split big regions into shared smaller tasks, so the workers complete their own tasks can pick up from the remaining instead of leaving its core idle
- reduce number of executed instructions in the hot path
This commit is contained in:
Serkan ÖZAL 2024-01-29 23:27:06 +03:00 committed by GitHub
parent f4a0039a59
commit 7d52a37600
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 65 additions and 43 deletions

View File

@ -26,7 +26,7 @@ if [[ ! "$(uname -s)" = "Darwin" ]]; then
JAVA_OPTS="$JAVA_OPTS -XX:+UseTransparentHugePages"
fi
CONFIGS="USE_SHARED_ARENA=true USE_SHARED_REGION=true CLOSE_STDOUT_ON_RESULT=true"
CONFIGS="USE_SHARED_ARENA=true USE_SHARED_REGION=true CLOSE_STDOUT_ON_RESULT=true REGION_COUNT=128"
#echo "Process started at $(date +%s%N | cut -b1-13)"
eval "exec 3< <({ $CONFIGS java $JAVA_OPTS --class-path target/average-1.0.0-SNAPSHOT.jar dev.morling.onebrc.CalculateAverage_serkan_ozal; })"

View File

@ -33,8 +33,10 @@ import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.TreeMap;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
@ -125,7 +127,9 @@ public class CalculateAverage_serkan_ozal {
arena = Arena.ofShared();
region = fc.map(FileChannel.MapMode.READ_ONLY, 0, fileSize, arena);
}
// Split whole file into regions and start region processors to handle those regions
List<Task> tasks = new ArrayList<>(regionCount);
// Split whole file into regions and create tasks for each region
List<Future<Response>> futures = new ArrayList<>(regionCount);
for (int i = 0; i < regionCount; i++) {
long endPos = Math.min(fileSize, startPos + regionSize);
@ -134,11 +138,19 @@ public class CalculateAverage_serkan_ozal {
long closestLineEndPos = (i < regionCount - 1)
? findClosestLineEnd(fc, endPos, lineBuffer)
: fileSize;
Request request = new Request(fc, arena, region, startPos, closestLineEndPos, result);
Task task = new Task(fc, region, startPos, closestLineEndPos);
tasks.add(task);
startPos = closestLineEndPos;
}
Queue<Task> sharedTasks = new ConcurrentLinkedQueue<>(tasks);
// Start region processors to process tasks for each region
for (int i = 0; i < concurrency; i++) {
Request request = new Request(arena, sharedTasks, result);
RegionProcessor regionProcessor = createRegionProcessor(request);
Future<Response> future = executor.submit(regionProcessor);
futures.add(future);
startPos = closestLineEndPos;
}
// Wait processors to complete
@ -234,22 +246,14 @@ public class CalculateAverage_serkan_ozal {
*/
private static class RegionProcessor implements Callable<Response> {
private final FileChannel fc;
private final Arena arena;
private final MemorySegment region;
private final long start;
private final long end;
private final long size;
private final Queue<Task> sharedTasks;
private final Result result;
private OpenMap map;
private RegionProcessor(Request request) {
this.fc = request.fileChannel;
this.arena = request.arena;
this.region = request.region;
this.start = request.start;
this.end = request.end;
this.size = end - start;
this.sharedTasks = request.sharedTasks;
this.result = request.result;
}
@ -277,14 +281,17 @@ public class CalculateAverage_serkan_ozal {
// If no shared global memory arena is used, create and use its own local memory arena
Arena a = arenaGiven ? arena : Arena.ofConfined();
try {
boolean regionGiven = region != null;
MemorySegment r = regionGiven
? region
: fc.map(FileChannel.MapMode.READ_ONLY, start, size, a);
long regionStart = regionGiven ? (r.address() + start) : r.address();
long regionEnd = regionStart + size;
for (Task task = sharedTasks.poll(); task != null; task = sharedTasks.poll()) {
boolean regionGiven = task.region != null;
MemorySegment r = regionGiven
? task.region
: task.fileChannel.map(FileChannel.MapMode.READ_ONLY, task.start, task.size, a);
long regionStart = regionGiven ? (r.address() + task.start) : r.address();
long regionEnd = regionStart + task.size;
doProcessRegion(r, r.address(), regionStart, regionEnd);
}
doProcessRegion(r, r.address(), regionStart, regionEnd);
if (VERBOSE) {
System.out.println("[Processor-" + Thread.currentThread().getName() + "] Region processed at " + System.currentTimeMillis());
}
@ -358,21 +365,22 @@ public class CalculateAverage_serkan_ozal {
// Vectorized search for key/value separator
ByteVector keyVector = ByteVector.fromMemorySegment(BYTE_SPECIES, region, regionPtr - regionAddress, NATIVE_BYTE_ORDER);
int keyValueSepOffset = keyVector.compare(VectorOperators.EQ, KEY_VALUE_SEPARATOR).firstTrue();
int keyLength = keyVector.compare(VectorOperators.EQ, KEY_VALUE_SEPARATOR).firstTrue();
// Check whether key/value separator is found in the first vector (city name is <= vector size)
if (keyValueSepOffset == vectorSize) {
if (keyLength != vectorSize) {
regionPtr += (keyLength + 1);
}
else {
regionPtr += vectorSize;
keyValueSepOffset = 0;
for (; U.getByte(regionPtr) != KEY_VALUE_SEPARATOR; regionPtr++)
;
keyLength = (int) (regionPtr - keyStartPtr);
regionPtr++;
// I have tried vectorized search for key/value separator in the remaining part,
// but since majority (99%) of the city names <= 16 bytes
// and other a few longer city names (have length < 16 and <= 32) not close to 32 bytes,
// byte by byte search is better in terms of performance (according to my experiments) and simplicity.
}
regionPtr += keyValueSepOffset;
int keyLength = (int) (regionPtr - keyStartPtr);
regionPtr++;
////////////////////////////////////////////////////////////////////////////////////////////////////////
// Put key and get map offset to put value
@ -411,21 +419,32 @@ public class CalculateAverage_serkan_ozal {
*/
private static final class Request {
private final FileChannel fileChannel;
private final Arena arena;
private final Queue<Task> sharedTasks;
private final Result result;
private Request(Arena arena, Queue<Task> sharedTasks, Result result) {
this.arena = arena;
this.sharedTasks = sharedTasks;
this.result = result;
}
}
private static final class Task {
private final FileChannel fileChannel;
private final MemorySegment region;
private final long start;
private final long end;
private final Result result;
private final long size;
private Request(FileChannel fileChannel, Arena arena, MemorySegment region,
long start, long end, Result result) {
private Task(FileChannel fileChannel, MemorySegment region, long start, long end) {
this.fileChannel = fileChannel;
this.arena = arena;
this.region = region;
this.start = start;
this.end = end;
this.result = result;
this.size = end - start;
}
}
@ -550,6 +569,8 @@ public class CalculateAverage_serkan_ozal {
// 128 bytes - total
private static final int ENTRY_SIZE = 128;
private static final int ENTRY_SIZE_SHIFT = 7;
private static final int COUNT_OFFSET = 0;
private static final int MIN_VALUE_OFFSET = 4;
private static final int MAX_VALUE_OFFSET = 6;
@ -563,12 +584,14 @@ public class CalculateAverage_serkan_ozal {
private static final int KEY_ARRAY_OFFSET = KEY_OFFSET - Unsafe.ARRAY_BYTE_BASE_OFFSET;
private final byte[] data;
// Max number of unique keys are 10K, so 1 << 14 (16384) is long enough to hold offsets for all of them
private final long[] entryOffsets = new long[1 << 14];
private int entryOffsetIdx = 0;
private final long[] entryOffsets;
private int entryOffsetIdx;
private OpenMap() {
this.data = new byte[MAP_SIZE];
// Max number of unique keys are 10K, so 1 << 14 (16384) is long enough to hold offsets for all of them
this.entryOffsets = new long[1 << 14];
this.entryOffsetIdx = 0;
}
// Credits: merykitty
@ -591,12 +614,12 @@ public class CalculateAverage_serkan_ozal {
// Calculate hash of key
int keyHash = calculateKeyHash(keyStartAddress, keyLength);
// and get the position of the entry in the linear map based on calculated hash
int idx = keyHash & ENTRY_HASH_MASK;
int idx = (keyHash & ENTRY_HASH_MASK) << ENTRY_SIZE_SHIFT;
// Start searching from the calculated position
// and continue until find an available slot in case of hash collision
// TODO Prevent infinite loop if all the slots are in use for other keys
for (long entryOffset = Unsafe.ARRAY_BYTE_BASE_OFFSET + (idx * ENTRY_SIZE);; entryOffset = (entryOffset + ENTRY_SIZE) & ENTRY_MASK) {
for (long entryOffset = Unsafe.ARRAY_BYTE_BASE_OFFSET + idx;; entryOffset = (entryOffset + ENTRY_SIZE) & ENTRY_MASK) {
int keySize = U.getInt(data, entryOffset + KEY_SIZE_OFFSET);
// Check whether current index is empty (no another key is inserted yet)
if (keySize == 0) {
@ -624,16 +647,15 @@ public class CalculateAverage_serkan_ozal {
// Use vectorized search for the comparison of keys.
// Since majority of the city names >= 8 bytes and <= 16 bytes,
// this way is more efficient (according to my experiments) than any other comparisons (byte by byte or 2 longs).
int keyCheckLength = Math.min(BYTE_SPECIES_SIZE, keyLength);
ByteVector entryKeyVector = ByteVector.fromArray(BYTE_SPECIES, data, keyStartArrayOffset);
long eqMask = keyVector.compare(VectorOperators.EQ, entryKeyVector).toLong();
int eqCount = Long.numberOfTrailingZeros(~eqMask);
if (eqCount < keyCheckLength) {
return false;
}
if (keyCheckLength == keyLength) {
if (eqCount >= keyLength) {
return true;
}
else if (keyLength <= BYTE_SPECIES_SIZE) {
return false;
}
keyCheckIdx = BYTE_SPECIES_SIZE;
}