CalculateAverage_gonix update (#461)

Co-authored-by: Giedrius D <d.giedrius@gmail.com>
This commit is contained in:
gonix 2024-01-17 19:48:05 +02:00 committed by GitHub
parent e549efa3af
commit 27b9232b7d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -133,78 +133,65 @@ class Aggregator {
int start = pos;
int hash = 0;
long tail = 0;
while (true) {
// This is a bit ugly, but it is faster than reading by byte.
// Seen this trick used in multiple other solutions.
// Nice breakdown here: https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
long tmpLong = buf.getLong(pos);
if ((tmpLong & 0xFF) == ';') {
break;
long match = tmpLong ^ 0x3B3B3B3B_3B3B3B3BL; // 3B == ';'
match = ((match - 0x01010101_01010101L) & (~match & 0x80808080_80808080L));
if (match == 0) {
hash = ((33 * hash) ^ (int) (tmpLong & 0xFFFFFFFF)) + (int) ((tmpLong >>> 33) & 0xFFFFFFFF);
pos += 8;
continue;
}
if (((tmpLong >>> 8) & 0xFF) == ';') {
hash = (33 * hash) ^ (int) (tmpLong & 0xFF);
pos += 1;
break;
}
if (((tmpLong >>> 16) & 0xFF) == ';') {
hash = (33 * hash) ^ (int) (tmpLong & 0xFFFF);
pos += 2;
break;
}
if (((tmpLong >>> 24) & 0xFF) == ';') {
hash = (33 * hash) ^ (int) (tmpLong & 0xFFFFFF);
pos += 3;
break;
}
if (((tmpLong >>> 32) & 0xFF) == ';') {
hash = (33 * hash) ^ (int) (tmpLong & 0xFFFFFFFF);
pos += 4;
break;
}
if (((tmpLong >>> 40) & 0xFF) == ';') {
hash = ((33 * hash) ^ (int) (tmpLong & 0xFFFFFFFF)) + (int) ((tmpLong >>> 33) & 0xFF);
pos += 5;
break;
}
if (((tmpLong >>> 48) & 0xFF) == ';') {
hash = ((33 * hash) ^ (int) (tmpLong & 0xFFFFFFFF)) + (int) ((tmpLong >>> 33) & 0xFFFF);
pos += 6;
break;
}
if (((tmpLong >>> 56) & 0xFF) == ';') {
hash = ((33 * hash) ^ (int) (tmpLong & 0xFFFFFFFF)) + (int) ((tmpLong >>> 33) & 0xFFFFFF);
pos += 7;
break;
}
hash = ((33 * hash) ^ (int) (tmpLong & 0xFFFFFFFF)) + (int) ((tmpLong >>> 33) & 0xFFFFFFFF);
pos += 8;
int tailBits = Long.numberOfTrailingZeros(match >>> 7);
long tailMask = ~(-1L << tailBits);
tail = tmpLong & tailMask;
hash = ((33 * hash) ^ (int) (tail & 0xFFFFFFFF)) + (int) ((tail >>> 33) & 0xFFFFFFFF);
pos += tailBits >> 3;
break;
}
hash = (33 * hash) ^ (hash >>> 15);
int len = pos - start;
assert (buf.get(pos) == ';') : "Expected ';'";
int lenInLongs = (pos - start) >> 3;
long tailAndLen = (tail << 8) | (lenInLongs & 0xFF);
// assert (buf.get(pos) == ';') : "Expected ';'";
pos++;
int measurement;
{
// Seen this trick used in multiple other solutions.
// Looks like the original author is @merykitty.
long tmpLong = buf.getLong(pos);
int sign = 1;
if ((tmpLong & 0xFF) == '-') {
sign = -1;
tmpLong >>>= 8;
pos++;
}
int value;
if (((tmpLong >>> 8) & 0xFF) == '.') {
value = (int) (((tmpLong & 0xFF) - '0') * 10 + (((tmpLong >>> 16) & 0xFF) - '0'));
pos += 4;
}
else {
value = (int) (((tmpLong & 0xFF) - '0') * 100 + (((tmpLong >>> 8) & 0xFF) - '0') * 10 + (((tmpLong >>> 24) & 0xFF) - '0'));
pos += 5;
}
measurement = sign * value;
}
assert (buf.get(pos - 1) == '\n') : "Expected '\\n'";
add(buf, start, len, hash, measurement);
// The 4th binary digit of the ascii of a digit is 1 while
// that of the '.' is 0. This finds the decimal separator
// The value can be 12, 20, 28
int decimalSepPos = Long.numberOfTrailingZeros(~tmpLong & 0x10101000);
int shift = 28 - decimalSepPos;
// signed is -1 if negative, 0 otherwise
long signed = (~tmpLong << 59) >> 63;
long designMask = ~(signed & 0xFF);
// Align the number to a specific position and transform the ascii code
// to actual digit value in each byte
long digits = ((tmpLong & designMask) << shift) & 0x0F000F0F00L;
// Now digits is in the form 0xUU00TTHH00 (UU: units digit, TT: tens digit, HH: hundreds digit)
// 0xUU00TTHH00 * (100 * 0x1000000 + 10 * 0x10000 + 1) =
// 0x000000UU00TTHH00 +
// 0x00UU00TTHH000000 * 10 +
// 0xUU00TTHH00000000 * 100
// Now TT * 100 has 2 trailing zeroes and HH * 100 + TT * 10 + UU < 0x400
// This results in our value lies in the bit 32 to 41 of this product
// That was close :)
long absValue = ((digits * 0x640a0001) >>> 32) & 0x3FF;
measurement = (int) ((absValue ^ signed) - signed);
pos += (decimalSepPos >>> 3) + 3;
}
// assert (buf.get(pos - 1) == '\n') : "Expected '\\n'";
add(buf, start, tailAndLen, hash, measurement);
}
return this;
@ -216,13 +203,13 @@ class Aggregator {
.mapToObj(offset -> new Entry(mem, offset));
}
private void add(ByteBuffer buf, int start, int len, int hash, int measurement) {
private void add(ByteBuffer buf, int start, long tailAndLen, int hash, int measurement) {
int idx = hash & INDEX_MASK;
while (true) {
if (index[idx] != 0) {
int offset = index[idx];
if (keyEqual(offset, buf, start, len)) {
int pos = offset + (len >> 3) + 2;
if (keyEqual(offset, buf, start, tailAndLen)) {
int pos = offset + (int) (tailAndLen & 0xFF) + 1;
mem[pos + FLD_MIN] = Math.min((int) measurement, (int) mem[pos + FLD_MIN]);
mem[pos + FLD_MAX] = Math.max((int) measurement, (int) mem[pos + FLD_MAX]);
mem[pos + FLD_SUM] += measurement;
@ -231,39 +218,27 @@ class Aggregator {
}
}
else {
index[idx] = create(buf, start, len, hash, measurement);
index[idx] = create(buf, start, tailAndLen, hash, measurement);
return;
}
idx = (idx + 1) & INDEX_MASK;
}
}
private int create(ByteBuffer buf, int start, int len, int hash, int measurement) {
private int create(ByteBuffer buf, int start, long tailAndLen, int hash, int measurement) {
int offset = memUsed;
mem[offset] = len;
mem[offset] = tailAndLen;
int memPos = offset + 1;
int memEndEarly = memPos + (len >> 3);
int memEnd = memPos + (int) (tailAndLen & 0xFF);
int bufPos = start;
int bufEnd = start + len;
while (memPos < memEndEarly) {
while (memPos < memEnd) {
mem[memPos] = buf.getLong(bufPos);
memPos += 1;
bufPos += 8;
}
if (bufPos < bufEnd) {
int shift = (8 - (len & 7)) << 3; // (8 - (len % 8)) * 8
long tmpLong = buf.getLong(bufPos) << shift >>> shift;
mem[memPos] = tmpLong;
}
else {
// "consume" extra long - makes math a bit simpler to calculate
// fields offset for update.
mem[memPos] = 0;
}
memPos += 1;
mem[memPos + FLD_MIN] = measurement;
mem[memPos + FLD_MAX] = measurement;
mem[memPos + FLD_SUM] = measurement;
@ -273,28 +248,21 @@ class Aggregator {
return offset;
}
private boolean keyEqual(int offset, ByteBuffer buf, int start, int len) {
if (len != mem[offset]) {
private boolean keyEqual(int offset, ByteBuffer buf, int start, long tailAndLen) {
if (mem[offset] != tailAndLen) {
return false;
}
int memPos = offset + 1;
int memEndEarly = memPos + (len >> 3);
int memEnd = memPos + (int) (tailAndLen & 0xFF);
int bufPos = start;
int bufEnd = start + len;
while (memPos < memEndEarly) {
while (memPos < memEnd) {
if (mem[memPos] != buf.getLong(bufPos)) {
return false;
}
memPos += 1;
bufPos += 8;
}
if (bufPos < bufEnd) {
int shift = (8 - (len & 7)) << 3; // (8 - (len % 8)) * 8
long tmpLong = buf.getLong(bufPos) << shift >>> shift;
if (mem[memPos] != tmpLong) {
return false;
}
}
return true;
}
@ -311,19 +279,22 @@ class Aggregator {
public String getKey() {
if (key == null) {
int pos = this.offset;
int keyLen = (int) mem[pos++];
var tmpBuf = ByteBuffer.allocate(keyLen + 8).order(ByteOrder.nativeOrder());
for (int i = 0; i < keyLen; i += 8) {
long tailAndLen = mem[pos++];
int keyLen = (int) (tailAndLen & 0xFF);
var tmpBuf = ByteBuffer.allocate((keyLen << 3) + 8).order(ByteOrder.nativeOrder());
for (int i = 0; i < keyLen; i++) {
tmpBuf.putLong(mem[pos++]);
}
key = new String(tmpBuf.array(), 0, keyLen, StandardCharsets.UTF_8);
long tail = tailAndLen >>> 8;
tmpBuf.putLong(tail);
int keyLenBytes = (keyLen << 3) + 8 - (Long.numberOfLeadingZeros(tail) >> 3);
key = new String(tmpBuf.array(), 0, keyLenBytes, StandardCharsets.UTF_8);
}
return key;
}
public Entry add(Entry other) {
int keyLen = (int) mem[offset];
int fldOffset = (keyLen >> 3) + 2;
int fldOffset = (int) (mem[offset] & 0xFF) + 1;
int pos = offset + fldOffset;
int otherPos = other.offset + fldOffset;
long[] otherMem = other.mem;
@ -340,8 +311,7 @@ class Aggregator {
@Override
public String toString() {
int keyLen = (int) mem[offset];
int pos = offset + (keyLen >> 3) + 2;
int pos = offset + (int) (mem[offset] & 0xFF) + 1;
return round(mem[pos + FLD_MIN])
+ "/" + round(((double) mem[pos + FLD_SUM]) / mem[pos + FLD_COUNT])
+ "/" + round(mem[pos + FLD_MAX]);