Moved nth_lex out of struct impl
This commit is contained in:
parent
d3a93a875f
commit
fdf46c9dd3
@ -16,6 +16,41 @@ fn binomial(n: usize, k: usize) -> usize {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn nth_lex<T: Clone + Ord>(
|
||||||
|
mut elements: Vec<T>,
|
||||||
|
k: usize,
|
||||||
|
nth: usize,
|
||||||
|
) -> Result<Vec<T>, Box<dyn Error>> {
|
||||||
|
elements.sort();
|
||||||
|
let num_elements = elements.len();
|
||||||
|
let num_combinations = binomial(num_elements, k);
|
||||||
|
if nth > num_combinations || k > num_elements || nth == 0 || k == 0 {
|
||||||
|
return Err(Box::from("Out of bounds"));
|
||||||
|
}
|
||||||
|
let mut i = 0;
|
||||||
|
let mut remaining_k = k;
|
||||||
|
let mut comb = Vec::new();
|
||||||
|
let mut remainder = nth - 1;
|
||||||
|
while remaining_k > 0 {
|
||||||
|
// Count the number of combinations that start with elements[i]
|
||||||
|
// example with n = 5, k = 2
|
||||||
|
// nth <= 4 select first
|
||||||
|
// nth <= 7 select second
|
||||||
|
// nth <= 9 select third
|
||||||
|
// nth == 10 select fourth
|
||||||
|
let count = binomial(num_elements - i - 1, remaining_k - 1);
|
||||||
|
if remainder < count {
|
||||||
|
// If the nth combination is within the count, pick this element
|
||||||
|
comb.push(elements[i].clone());
|
||||||
|
remaining_k -= 1;
|
||||||
|
} else {
|
||||||
|
remainder -= count;
|
||||||
|
}
|
||||||
|
i += 1;
|
||||||
|
}
|
||||||
|
Ok(comb)
|
||||||
|
}
|
||||||
|
|
||||||
#[derive(Clone)]
|
#[derive(Clone)]
|
||||||
pub struct Combinator<T: Clone + Ord> {
|
pub struct Combinator<T: Clone + Ord> {
|
||||||
pub current: Vec<T>,
|
pub current: Vec<T>,
|
||||||
@ -34,37 +69,6 @@ impl<T: Clone + Ord> Combinator<T> {
|
|||||||
idx: 0,
|
idx: 0,
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn nth_lex(mut elements: Vec<T>, k: usize, nth: usize) -> Result<Vec<T>, Box<dyn Error>> {
|
|
||||||
elements.sort();
|
|
||||||
let num_elements = elements.len();
|
|
||||||
let num_combinations = binomial(num_elements, k);
|
|
||||||
if nth > num_combinations || k > num_elements || nth == 0 || k == 0 {
|
|
||||||
return Err(Box::from("Out of bounds"));
|
|
||||||
}
|
|
||||||
let mut i = 0;
|
|
||||||
let mut remaining_k = k;
|
|
||||||
let mut comb = Vec::new();
|
|
||||||
let mut remainder = nth - 1;
|
|
||||||
while remaining_k > 0 {
|
|
||||||
// Count the number of combinations that start with elements[i]
|
|
||||||
// example with n = 5, k = 2
|
|
||||||
// nth <= 4 select first
|
|
||||||
// nth <= 7 select second
|
|
||||||
// nth <= 9 select third
|
|
||||||
// nth == 10 select fourth
|
|
||||||
let count = binomial(num_elements - i - 1, remaining_k - 1);
|
|
||||||
if remainder < count {
|
|
||||||
// If the nth combination is within the count, pick this element
|
|
||||||
comb.push(elements[i].clone());
|
|
||||||
remaining_k -= 1;
|
|
||||||
} else {
|
|
||||||
remainder -= count;
|
|
||||||
}
|
|
||||||
i += 1;
|
|
||||||
}
|
|
||||||
Ok(comb)
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: Clone + Ord> Iterator for Combinator<T> {
|
impl<T: Clone + Ord> Iterator for Combinator<T> {
|
||||||
|
@ -8,54 +8,54 @@ fn factorial(num: usize) -> usize {
|
|||||||
fact
|
fact
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Explanation
|
||||||
|
///
|
||||||
|
/// there are 10! possible permutations
|
||||||
|
/// for each first number there are 9!, for each first 2 numbers 8!, etc.
|
||||||
|
/// we check how many times we have 9! permutations before we're over 1_000_000
|
||||||
|
/// aka. 1000000 / 9!
|
||||||
|
/// we take the remainder and check how many times we have 8! before we?re over it
|
||||||
|
/// (1000000 % 9!) 8!
|
||||||
|
/// etc.
|
||||||
|
/// every iteration we remove the digit by the idx from the original permutation
|
||||||
|
/// we only check for 999999 permutations because we already have the first one
|
||||||
|
///
|
||||||
|
pub fn nth_lex<T: Clone + Ord>(mut digits: Vec<T>, nth: usize) -> Result<Vec<T>, Box<dyn Error>> {
|
||||||
|
digits.sort();
|
||||||
|
if nth == 1 {
|
||||||
|
return Ok(digits);
|
||||||
|
}
|
||||||
|
if nth > factorial(digits.len()) || nth == 0 {
|
||||||
|
return Err(Box::from("Out of bounds"));
|
||||||
|
}
|
||||||
|
let mut perm = Vec::new();
|
||||||
|
let num_unique_digits = digits.len();
|
||||||
|
let mut remainder = nth - 1;
|
||||||
|
for idx in 1..=digits.len() {
|
||||||
|
let permutations = remainder / factorial(num_unique_digits - idx);
|
||||||
|
remainder %= factorial(num_unique_digits - idx);
|
||||||
|
perm.push(digits[permutations].clone());
|
||||||
|
digits.remove(permutations);
|
||||||
|
}
|
||||||
|
Ok(perm)
|
||||||
|
}
|
||||||
|
|
||||||
#[derive(Clone)]
|
#[derive(Clone)]
|
||||||
pub struct Permutator<T: Copy + Ord> {
|
pub struct Permutator<T: Clone + Ord> {
|
||||||
pub current: Vec<T>,
|
pub current: Vec<T>,
|
||||||
idx: usize,
|
idx: usize,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: Copy + Ord> Permutator<T> {
|
impl<T: Clone + Ord> Permutator<T> {
|
||||||
pub fn new(elements: Vec<T>) -> Self {
|
pub fn new(elements: Vec<T>) -> Self {
|
||||||
Self {
|
Self {
|
||||||
current: elements,
|
current: elements,
|
||||||
idx: 0,
|
idx: 0,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Explanation
|
|
||||||
///
|
|
||||||
/// there are 10! possible permutations
|
|
||||||
/// for each first number there are 9!, for each first 2 numbers 8!, etc.
|
|
||||||
/// we check how many times we have 9! permutations before we're over 1_000_000
|
|
||||||
/// aka. 1000000 / 9!
|
|
||||||
/// we take the remainder and check how many times we have 8! before we?re over it
|
|
||||||
/// (1000000 % 9!) 8!
|
|
||||||
/// etc.
|
|
||||||
/// every iteration we remove the digit by the idx from the original permutation
|
|
||||||
/// we only check for 999999 permutations because we already have the first one
|
|
||||||
///
|
|
||||||
pub fn nth_lex(mut digits: Vec<T>, nth: usize) -> Result<Vec<T>, Box<dyn Error>> {
|
|
||||||
digits.sort();
|
|
||||||
if nth == 1 {
|
|
||||||
return Ok(digits);
|
|
||||||
}
|
|
||||||
if nth > factorial(digits.len()) || nth == 0 {
|
|
||||||
return Err(Box::from("Out of bounds"));
|
|
||||||
}
|
|
||||||
let mut perm = Vec::new();
|
|
||||||
let num_unique_digits = digits.len();
|
|
||||||
let mut remainder = nth - 1;
|
|
||||||
for idx in 1..=digits.len() {
|
|
||||||
let permutations = remainder / factorial(num_unique_digits - idx);
|
|
||||||
remainder %= factorial(num_unique_digits - idx);
|
|
||||||
perm.push(digits[permutations]);
|
|
||||||
digits.remove(permutations);
|
|
||||||
}
|
|
||||||
Ok(perm)
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: Copy + Ord> Iterator for Permutator<T> {
|
impl<T: Clone + Ord> Iterator for Permutator<T> {
|
||||||
type Item = Vec<T>;
|
type Item = Vec<T>;
|
||||||
/// Returns the next permutation and changes the current permutation to it
|
/// Returns the next permutation and changes the current permutation to it
|
||||||
/// This operation wraps around
|
/// This operation wraps around
|
||||||
@ -73,7 +73,7 @@ impl<T: Copy + Ord> Iterator for Permutator<T> {
|
|||||||
for idx in 1..=digits.len() {
|
for idx in 1..=digits.len() {
|
||||||
let permutations = remainder / factorial(num_unique_digits - idx);
|
let permutations = remainder / factorial(num_unique_digits - idx);
|
||||||
remainder %= factorial(num_unique_digits - idx);
|
remainder %= factorial(num_unique_digits - idx);
|
||||||
perm.push(digits[permutations]);
|
perm.push(digits[permutations].clone());
|
||||||
digits.remove(permutations);
|
digits.remove(permutations);
|
||||||
}
|
}
|
||||||
self.idx += 1;
|
self.idx += 1;
|
||||||
|
Loading…
Reference in New Issue
Block a user