Use PuzzleUtils

This commit is contained in:
Fabian Schmidt 2024-11-18 11:29:52 +01:00
parent 14b8764ee5
commit 0ea936e89f
26 changed files with 55 additions and 615 deletions

10
Cargo.lock generated
View File

@ -1,7 +1,15 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
version = 4
[[package]]
name = "project_euler"
version = "0.1.0"
dependencies = [
"utils",
]
[[package]]
name = "utils"
version = "0.1.0"
source = "git+https://git.plobos.xyz/projects/PuzzleUtils.git#d3a93a875f56c8f865411c0b7437986f413ca524"

View File

@ -6,3 +6,4 @@ edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
utils = { git = "https://git.plobos.xyz/projects/PuzzleUtils.git" }

View File

@ -23,7 +23,7 @@ fn get_divisors(n: usize) -> Vec<usize> {
divisors.push(potential_divisor);
divisors.push(n / potential_divisor);
}
potential_divisor = potential_divisor + 1;
potential_divisor += 1;
}
// This almost made me go mad
if potential_divisor * potential_divisor == n {

View File

@ -1,4 +1,4 @@
use project_euler::number::Number;
use utils::number::Number;
fn main() {
let mut sum = Number::from(0);

View File

@ -1,4 +1,4 @@
use project_euler::number::Number;
use utils::number::Number;
fn main() {
let width = Number::from(20);

View File

@ -1,4 +1,4 @@
use project_euler::number::Number;
use utils::number::Number;
fn main() {
let power = get_power(1000);

View File

@ -1,4 +1,4 @@
use project_euler::number::Number;
use utils::number::Number;
fn main() {
let mut num_letters = 0;

View File

@ -14,7 +14,7 @@ fn fibonacci_even_sum(limit: i64) -> i64 {
}
}
return sum;
sum
}
#[cfg(test)]

View File

@ -1,4 +1,4 @@
use project_euler::number::Number;
use utils::number::Number;
fn main() {
let factorial = get_factorial(100);

View File

@ -9,10 +9,10 @@ fn main() {
for i in 2..10000 {
let divisors = get_divisors(i);
let sum_divisors = divisors.iter().sum();
if amicable_cache.get(&sum_divisors).is_some() {
if amicable_cache.contains_key(&sum_divisors) {
continue;
}
if despicable_cache.get(&sum_divisors).is_some() {
if despicable_cache.contains_key(&sum_divisors) {
continue;
}
let other_divisors = get_divisors(sum_divisors);
@ -37,7 +37,7 @@ fn get_divisors(n: isize) -> Vec<isize> {
divisors.insert(potential_divisor);
divisors.insert(n / potential_divisor);
}
potential_divisor = potential_divisor + 1;
potential_divisor += 1;
}
divisors.iter().map(|&divisor| divisor).collect()
divisors.iter().copied().collect()
}

View File

@ -14,12 +14,9 @@ fn main() {
}
let mut contained = false;
for abundant in &abundants {
match abundants.binary_search(&(num - abundant)) {
Ok(_) => {
contained = true;
break;
}
Err(_) => {}
if abundants.binary_search(&(num - abundant)).is_ok() {
contained = true;
break;
}
}
if !contained {
@ -54,7 +51,7 @@ fn get_divisors(n: usize) -> Vec<usize> {
divisors.push(potential_divisor);
divisors.push(n / potential_divisor);
}
potential_divisor = potential_divisor + 1;
potential_divisor += 1;
}
// This almost made me go mad, should have used the one from 21
if potential_divisor * potential_divisor == n {

View File

@ -1,9 +1,9 @@
use std::error::Error;
use utils::permutation::nth_lex;
fn main() {
let n = 1_000_000;
let digits = vec![1, 0, 2, 3, 4, 5, 6, 7, 8, 9];
let perm = permutation(digits, n)
let perm = nth_lex(digits, n)
.expect("Should return ok")
.iter()
.map(|&digit| digit.to_string())
@ -12,55 +12,14 @@ fn main() {
println!("{perm}");
let digits = vec!["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"];
//for n in 1..=factorial(digits.len()) {
let perm = permutation(digits.clone(), n)
let perm = nth_lex(digits.clone(), n)
.expect("Should return ok")
.join("");
println!("{perm}");
//}
let digits = vec!["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"];
let perm = permutation(digits.clone(), n)
let perm = nth_lex(digits.clone(), n)
.expect("Should return ok")
.join("");
println!("{perm}");
}
/// Explanation
///
/// there are 10! possible permutations
/// for each first number there are 9!, for each first 2 numbers 8!, etc.
/// we check how many times we have 9! permutations before we're over 1_000_000
/// aka. 1000000 / 9!
/// we take the remainder and check how many times we have 8! before we?re over it
/// (1000000 % 9!) 8!
/// etc.
/// every iteration we remove the digit by the idx from the original permutation
/// we only check for 999999 permutations because we already have the first one
///
fn permutation<T: Copy + Ord>(mut digits: Vec<T>, nth: usize) -> Result<Vec<T>, Box<dyn Error>> {
digits.sort();
if nth == 1 {
return Ok(digits);
}
if nth > factorial(digits.len()) || nth == 0 {
return Err(Box::from("Out of bounds"));
}
let mut perm = Vec::new();
let num_unique_digits = digits.len();
let mut remainder = nth - 1;
for idx in 1..=digits.len() {
let permutations = remainder / factorial(num_unique_digits - idx);
remainder = remainder % factorial(num_unique_digits - idx);
perm.push(digits[permutations]);
digits.remove(permutations);
}
Ok(perm)
}
// number of permutations is n! where n is the number of digits
fn factorial(num: usize) -> usize {
let mut fact = 1;
for n in 1..=num {
fact = fact * n;
}
fact
}

View File

@ -1,67 +1,17 @@
use project_euler::number::Number;
use utils::number::Number;
fn main() {
let fib_idx = find_fib(1000);
println!("{fib_idx}");
}
// Way too slow, from 20 onward we go from µs to ms and from 32 we measure in seconds
//fn fib_recursion(n: Number) -> usize {
// let one = Number::from(1);
// if n == one {
// return 1;
// }
// let two = Number::from(2);
// if n == two {
// return 1;
// }
// fib_recursion(n.clone() - two) + fib_recursion(n - one)
//}
// almost as fast as the no recursion solution but more complicated and more memory intensiv
// creating an inner function to not have to pass in the hashmap from outside makes it slightly slower
//fn fib_recursion_cached(n: Number) -> Number {
// let mut cache: HashMap<Number, Number> = HashMap::new();
// fn inner_fib_recursion_cached(n: Number, cache: &mut HashMap<Number, Number>) -> Number {
// let one = Number::from(1);
// if n == one {
// return one;
// }
// let two = Number::from(2);
// if n == two {
// return one;
// }
// match cache.get(&n) {
// Some(res) => return res.clone(),
// None => {
// let res = inner_fib_recursion_cached(n.clone() - two, cache) + inner_fib_recursion_cached(n.clone() - one, cache);
// cache.insert(n.clone(), res.clone());
// return res;
// },
// }
// }
// inner_fib_recursion_cached(n, &mut cache)
//}
// faster than recursion
fn fib(n: usize) -> Number {
let mut last_two = (Number::from(1), Number::from(1));
let mut iteration = 1;
while iteration < n {
last_two = (last_two.1.clone(), last_two.0 + last_two.1);
iteration += 1;
}
last_two.0
}
fn find_fib(num_digits: usize) -> usize {
let mut n = 1;
loop {
let fib = fib(n);
let fib = Number::fib(n);
let fib_len = fib.digits.len();
if fib_len == num_digits {
return n;
return n as usize;
}
n += 1;
}

View File

@ -13,7 +13,7 @@ fn main() {
for corner in 0..4 {
sum += last_square_end + (square * 2) * (corner + 1);
}
last_square_end = last_square_end + (square * 2) * 4;
last_square_end += (square * 2) * 4;
}
println!("{sum}");
}

View File

@ -1,6 +1,7 @@
use project_euler::number::Number;
use std::collections::HashSet;
use utils::number::Number;
fn main() {
let mut terms: HashSet<Number> = HashSet::new();
let max = 100;

View File

@ -1,34 +1,6 @@
use utils::math::prime_factors;
fn main() {
let result = prime_factors(600851475143).into_iter().max();
println!("Result: {}", result.unwrap());
}
fn prime_factors(number: i64) -> Vec<i64> {
let mut factors = vec![2];
let upper: i64 = (number as f64).sqrt().ceil() as i64;
for i in 3..upper {
let mut is_prime = true;
for factor in &factors {
if i % factor == 0 {
is_prime = false;
break;
}
}
if is_prime && number % i == 0 {
factors.push(i);
}
}
return factors;
}
#[cfg(test)]
mod tests {
use crate::prime_factors;
#[test]
fn it_works() {
let result = prime_factors(13195).into_iter().max();
assert_eq!(result.unwrap(), 29);
}
}

View File

@ -1,4 +1,4 @@
use project_euler::number::Number;
use utils::number::Number;
fn main() {
println!("{}", nth_powers(5))
@ -11,7 +11,7 @@ fn nth_powers(nth: u32) -> isize {
loop {
let attempt = max * idx;
if Number::from(attempt).digits.len() < idx as usize {
max = (idx - 1) * max;
max *= idx - 1;
break;
}
idx += 1;

View File

@ -1,26 +1,18 @@
use project_euler::number::Number;
use utils::{math::factorial, number::Number};
fn main() {
let factorials_sum = digit_factorials();
println!("{factorials_sum}");
}
fn factorial(num: isize) -> isize {
let mut fact = 1;
for n in 1..=num {
fact = fact * n;
}
fact
}
fn digit_factorials() -> isize {
let mut factorials = vec![];
let mut max = factorial(9);
let mut max = factorial(9) as isize;
let mut idx = 1;
loop {
let attempt = max * idx;
if Number::from(attempt).digits.len() < idx as usize {
max = (idx - 1) * max;
max *= idx - 1;
break;
}
idx += 1;
@ -29,7 +21,7 @@ fn digit_factorials() -> isize {
let digits_fact_sum = Number::from(n)
.digits
.iter()
.map(|&digit| factorial(digit))
.map(|&digit| factorial(digit as u64) as isize)
.sum();
if n == digits_fact_sum {
factorials.push(n);

View File

@ -16,7 +16,7 @@ fn find_largest_palindrome(digits: u32) -> i64 {
}
}
return largest;
largest
}
fn check_palindrome(number: i64) -> bool {
@ -27,7 +27,7 @@ fn check_palindrome(number: i64) -> bool {
return false;
}
}
return true;
true
}
#[cfg(test)]

View File

@ -1,4 +1,4 @@
use project_euler::number::Number;
use utils::number::Number;
fn main() {
println!("{}", power_series(1000));

View File

@ -24,7 +24,7 @@ fn solve() -> usize {
let mut chain_length = primes.len() - 1;
loop {
for prime_window in primes.windows(chain_length) {
let sum = prime_window.iter().map(|&prime| prime).sum::<usize>();
let sum = prime_window.iter().copied().sum::<usize>();
if primes.contains(&sum) {
return sum;
}

View File

@ -1,17 +1,19 @@
use utils::math::factorial;
fn main() {
let result = smallest_multiple(20);
println!("Result: {result}");
}
fn smallest_multiple(number: i64) -> i64 {
let factorial = factorial(number);
let factorial = factorial(number.try_into().unwrap()) as i64;
for i in number..=factorial {
if is_multiple(i, number) {
return i;
}
}
return factorial;
factorial
}
fn is_multiple(number: i64, range: i64) -> bool {
@ -23,14 +25,6 @@ fn is_multiple(number: i64, range: i64) -> bool {
true
}
fn factorial(n: i64) -> i64 {
let mut result = 1;
for i in 1..=n {
result *= i;
}
return result;
}
#[cfg(test)]
mod tests {
use crate::smallest_multiple;

View File

@ -1,30 +1,10 @@
use utils::math::nth_prime;
fn main() {
let result = nth_prime(10001);
println!("Result: {}", result.unwrap());
}
fn nth_prime(nth: i64) -> Option<i64> {
let mut primes: Vec<i64> = vec![2];
let mut i = 3;
while primes.len() < nth as usize {
let mut is_prime = true;
for prime in &primes {
if i % prime == 0 {
is_prime = false;
break;
}
}
if is_prime {
primes.push(i);
}
i += 1;
}
return primes.pop();
}
#[cfg(test)]
mod tests {
use crate::nth_prime;

View File

@ -19,7 +19,7 @@ fn adjacent_product(number: &str, window: usize) -> i64 {
.max()
.unwrap();
return result;
result
}
#[cfg(test)]

View File

@ -14,5 +14,5 @@ fn main() {
}
fn is_triplet(a: usize, b: usize, c: usize) -> bool {
return a * a + b * b == c * c;
a * a + b * b == c * c
}

View File

@ -1,414 +0,0 @@
pub mod number {
use std::cmp::{min, Ordering};
use std::fmt::{Display, Formatter};
use std::iter::zip;
use std::ops::{Add, Div, Mul, Rem, Sub};
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum Sign {
Positif,
Negatif,
}
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub struct Number {
pub digits: Vec<isize>,
pub sign: Sign,
}
impl Number {
pub fn get_digit(n: isize, pos: usize) -> isize {
let modulo = 10isize.pow(pos as u32 + 1);
let divisor = modulo / 10;
(n % modulo) / divisor
}
pub const fn byte_to_digit(b: u8) -> isize {
// wrapping_sub('0' as u32) same as - 48 but less magical
(b as isize).wrapping_sub('0' as isize)
}
pub fn handle_overflows(&mut self) {
let new_digits = &mut self.digits;
let digits_len = new_digits.len();
let mut digits_idx = digits_len - 1;
loop {
let digit_or_num = new_digits[digits_idx];
let digit_len = if digit_or_num != 0 {
(digit_or_num.abs() as f64 + 1.0).log10().ceil() as usize
} else {
1
};
for i in 0..digit_len {
let new_digit = Self::get_digit(digit_or_num, i);
let (digit_idx, is_overflow) = digits_idx.overflowing_sub(i);
if is_overflow {
new_digits.insert(0, new_digit);
digits_idx += 1;
} else {
let digit = new_digits.get_mut(digit_idx).unwrap();
if i == 0 {
*digit = new_digit;
} else {
*digit += new_digit;
}
}
}
if digits_idx == 0 {
break;
}
digits_idx -= 1;
}
}
pub fn handle_underflows(&mut self) {
let new_digits = &mut self.digits;
let mut digits_len = new_digits.len();
for digit in new_digits.clone() {
match digit.cmp(&0) {
Ordering::Equal => {
if digits_len == 1 {
return;
}
digits_len -= 1;
new_digits.remove(0);
}
Ordering::Less => {
self.sign = Sign::Negatif;
break;
}
_ => break,
};
}
let mut digits_idx = digits_len - 1;
loop {
let digit = new_digits[digits_idx];
if self.sign == Sign::Positif && digit < 0 && digits_idx > 0 {
let mut_digit = new_digits.get_mut(digits_idx).unwrap();
*mut_digit = 10 - digit.abs();
let mut_digit = new_digits.get_mut(digits_idx - 1).unwrap();
*mut_digit -= 1;
} else {
let mut_digit = new_digits.get_mut(digits_idx).unwrap();
*mut_digit = digit.abs();
}
if digits_idx == 0 {
break;
}
digits_idx -= 1;
}
for digit in new_digits.clone() {
match digit.cmp(&0) {
Ordering::Equal => {
new_digits.remove(0);
}
_ => break,
};
}
}
pub fn pow(self, n: u32) -> Self {
let mut result = self.clone();
if ((self.digits.len() * 8) as u32) < isize::BITS {
let number = isize::from(self);
for _i in 1..n {
result = result * number;
}
result
} else {
let number = self.clone();
for _i in 1..n {
result = result * number.clone();
}
result
}
}
pub fn fact(self) -> Self {
let mut fact = Number::from(1);
if ((self.digits.len() * 8) as u32) < isize::BITS {
let max = isize::from(self);
for n in 1..=max {
fact = fact * n;
}
fact
} else {
panic!("starting number too big")
}
}
fn div_with_rem(n1: Number, n2: Number) -> (Number, Number) {
let n1_len = n1.digits.len();
let n2_len = n2.digits.len();
if n2_len > n1_len {
return (Number::from(0), n2);
}
let dividend = n1.digits[..n2_len].to_vec();
let mut quotient = vec![];
let mut remainder = Number {
digits: dividend.clone(),
sign: Sign::Positif,
};
let mut iteration = 1;
loop {
let mut factor = 0;
loop {
let temp_remainder = remainder.clone() - n2.clone();
if temp_remainder.sign == Sign::Negatif {
quotient.push(factor);
break;
}
remainder = temp_remainder;
factor += 1;
}
if n1_len == n2_len + iteration - 1 {
break;
}
remainder.digits.push(n1.digits[n2_len + iteration - 1]);
iteration += 1;
}
let mut res = Number {
digits: quotient,
sign: Sign::Positif,
};
res.handle_overflows();
for digit in res.clone().digits {
if digit != 0 {
break;
}
res.digits.remove(0);
}
for digit in remainder.clone().digits {
if digit != 0 || remainder.digits.len() == 1 {
break;
}
remainder.digits.remove(0);
}
(res, remainder)
}
}
impl From<Number> for isize {
fn from(value: Number) -> Self {
let mut num = 0;
for (pos, &digit) in value.digits.iter().rev().enumerate() {
num += digit * 10isize.pow(pos as u32);
}
num
}
}
impl From<Number> for String {
fn from(value: Number) -> Self {
let string_vec: Vec<String> = value
.digits
.iter()
.map(|&digit| digit.to_string())
.collect();
string_vec.concat()
}
}
impl From<&str> for Number {
fn from(value: &str) -> Self {
let bytes = value.as_bytes();
let (sign, idx_start) = match bytes[0] {
b'-' => (Sign::Negatif, 1),
_ => (Sign::Positif, 0),
};
let mut digits = vec![];
for &byte in &bytes[idx_start..] {
let digit = Self::byte_to_digit(byte);
digits.push(digit);
}
Self { digits, sign }
}
}
impl From<isize> for Number {
fn from(value: isize) -> Self {
let mut sign = Sign::Positif;
if value < 0 {
sign = Sign::Negatif;
}
let num_len = if value > 0 {
(value as f64 + 1.0).log10().ceil() as usize
} else {
1
};
let mut digits = vec![];
for digit_idx in 0..num_len {
let digit = Self::get_digit(value, digit_idx);
digits.push(digit);
}
let digits = digits.iter().rev().copied().collect();
Self { digits, sign }
}
}
impl Display for Number {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let number_string = self
.digits
.iter()
.map(|&digit| digit.to_string())
.collect::<Vec<String>>()
.join("");
match self.sign {
Sign::Positif => write!(f, "{number_string}"),
Sign::Negatif => write!(f, "-{number_string}"),
}
}
}
impl Add for Number {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let self_len = self.digits.len();
let rhs_len = rhs.digits.len();
let mut self_digits = self.digits.clone();
let mut rhs_digits = rhs.digits.clone();
if self_len != rhs_len {
let difference = (self_len).abs_diff(rhs_len);
let pad = vec![0isize; difference];
if min(self_len, rhs_len) == self_len {
self_digits = [pad, self.digits].concat();
} else {
rhs_digits = [pad, rhs.digits].concat();
}
}
let zipped = zip(self_digits.iter(), rhs_digits.iter());
let added = zipped
.map(|(self_digit, rhs_digit)| self_digit + rhs_digit)
.collect();
let mut overflown_number = Self {
digits: added,
sign: Sign::Positif,
};
overflown_number.handle_overflows();
overflown_number
}
}
impl Sub for Number {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let self_len = self.digits.len();
let rhs_len = rhs.digits.len();
let mut self_digits = self.digits.clone();
let mut rhs_digits = rhs.digits.clone();
if self_len != rhs_len {
let difference = (self_len).abs_diff(rhs_len);
let pad = vec![0isize; difference];
if min(self_len, rhs_len) == self_len {
self_digits = [pad, self.digits].concat();
} else {
rhs_digits = [pad, rhs.digits].concat();
}
}
let zipped = zip(self_digits.iter(), rhs_digits.iter());
let added = zipped
.map(|(self_digit, rhs_digit)| self_digit - rhs_digit)
.collect();
let mut underflown_number = Self {
digits: added,
sign: Sign::Positif,
};
underflown_number.handle_underflows();
underflown_number
}
}
impl Mul for Number {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
let multiplied = self.digits.iter().rev().enumerate().map(|(pos, &digit)| {
let mut mult = digit * rhs.clone();
mult.digits = [mult.digits, vec![0; pos]].concat();
mult
});
let mut overflown_number = multiplied.reduce(|acc, num| acc + num).unwrap();
overflown_number.handle_overflows();
overflown_number
}
}
impl Mul<Number> for isize {
type Output = Number;
fn mul(self, rhs: Number) -> Self::Output {
let multiplied = rhs.digits.iter().map(|digit| digit * self).collect();
let mut overflown_number = Number {
digits: multiplied,
sign: Sign::Positif,
};
overflown_number.handle_overflows();
overflown_number
}
}
impl Mul<isize> for Number {
type Output = Self;
fn mul(self, rhs: isize) -> Self::Output {
let multiplied = self.digits.iter().map(|digit| digit * rhs).collect();
let mut overflown_number = Self {
digits: multiplied,
sign: Sign::Positif,
};
overflown_number.handle_overflows();
overflown_number
}
}
impl Div for Number {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
Self::div_with_rem(self, rhs).0
}
}
impl Rem for Number {
type Output = Self;
fn rem(self, rhs: Self) -> Self::Output {
Self::div_with_rem(self, rhs).1
}
}
#[cfg(test)]
mod number_tests {
use crate::number::{Number, Sign};
#[test]
fn test_from_isize() {
let number = Number::from(-1234);
assert_eq!(
number,
Number {
digits: vec![1234],
sign: Sign::Negatif
}
);
}
#[test]
fn test_get_digit() {
let num = 12345;
let digit_1 = Number::get_digit(num, 0);
let digit_2 = Number::get_digit(num, 1);
let digit_3 = Number::get_digit(num, 2);
let digit_4 = Number::get_digit(num, 3);
let digit_5 = Number::get_digit(num, 4);
assert_eq!(digit_1, 5);
assert_eq!(digit_2, 4);
assert_eq!(digit_3, 3);
assert_eq!(digit_4, 2);
assert_eq!(digit_5, 1);
}
}
}