1brc/src/main/java/dev/morling/onebrc/CalculateAverage_imrafaelmerino.java
2024-01-06 18:20:44 +01:00

293 lines
9.8 KiB
Java

/*
* Copyright 2023 The original authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dev.morling.onebrc;
import java.io.IOException;
import java.io.UncheckedIOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.channels.FileChannel.MapMode;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.*;
import java.util.concurrent.ForkJoinPool;
import java.util.function.Supplier;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
/**
* @author Rafael Merino García
*
* <pre>
*
* Model Name: MacBook Pro
* Model Identifier: MacBookPro17,1
* Chip: Apple M1
* Total Number of Cores: 8 (4 performance and 4 efficiency)
* Memory: 16 GB
*
* Executed 10 times in my machine with a chunk size of 20MB
*
* 21.0.1-graal
* avg: 15,366 sg | min: 14,878 sg | max: 15,937 sg | acc: 153,657 sg | times: 10
*
* 21-oracle
* avg: 17,032 sg | min: 16,448 sg | max: 17,424 sg | acc: 170,325 sg | times: 10
*
*
*
* Credits:
* . bjhara: Really nice splitearator to be able to use the Stream API.
* . ebarlas: working with integers since we only have to consider one decimal
* (I don't think this makes a big difference though)
* . filiphr: It was my starting point, since it's the most natural way of approaching
* the problem using the nice spliterartor from bjhara. This solution has the potential
* for substantial improvement by actively pursuing a <br>higher level of parallelization<br>.
* </pre>
*
*
* <pre>
* Generalization Note:
*
* - This solution is designed to be applicable to any CSV file under the following assumptions:
*
* - The line schema follows the pattern: name;value\n
*
* - The name is up to 128 characters (can be changed to hold any other size and irrelevant for the result)
*
* - The value is a decimal number with only one decimal digit.
*
* - The focus is on maintaining code simplicity without extreme optimization efforts,
* as achieving meaningful conclusions often requires substantial time and dedication,
* particularly with tools like JMH.
*
* - Emphasis on utilizing idiomatic Java and common data structures, following a pragmatic approach.
*
* - Addressing the question of whether the workload is CPU-bound or IO-bound is key; indications suggest
* both aspects are relevant. It's difficult to make the cores sweat! The observed trend in many solutions
* suggests the potential for increased parallelization to fully utilize multiple cores effectively.
* This solution brings to the table the Java class ManagedBlock, aiming to enhance parallelism in scenarios
* where threads from the Fork Join Pool are blocked.
*
* - Commong guys! stop rolling the dice with fancy optimizations and reiventing hash maps structures and
* hash algorithms. This should be <a href="https://dailypapert.com/hard-fun/">hard fun</a>
* and not tedious. Dont get me wrong! just an opinion :)
*
* - Last but not least, Gunnar Morling, you rock man! Thanks for your time and effort.
*
* -
*
* </pre>
*/
public class CalculateAverage_imrafaelmerino {
private static final String FILE = "./measurements.txt";
private static final int FIELD_SIZE = 128;
public static void main(String[] args) throws IOException {
var chunkSize = Long.parseLong(args[0].trim());
var result = calculateStats(FILE, chunkSize);
System.out.println(result);
}
private static Map<String, Stat> calculateStats(String file,
long chunkSize)
throws IOException {
try (var fileChannel = FileChannel.open(Paths.get(file),
StandardOpenOption.READ)) {
var stats = fileMemoryStream(fileChannel, chunkSize)
.parallel()
.map(p -> ManagedComputation.compute(() -> parse(p)))
.reduce(Collections.emptyMap(),
(stat1, stat2) -> combine(stat1, stat2));
return new TreeMap<>(stats);
}
}
private static Map<String, Stat> combine(Map<String, Stat> xs,
Map<String, Stat> ys) {
Map<String, Stat> result = new HashMap<>();
for (var key : xs.keySet()) {
var m1 = xs.get(key);
var m2 = ys.get(key);
var combined = (m2 == null) ? m1 : (m1 == null) ? m2 : Stat.combine(m1, m2);
result.put(key, combined);
}
for (var key : ys.keySet())
result.putIfAbsent(key, ys.get(key));
return result;
}
private static Map<String, Stat> parse(ByteBuffer bb) {
Map<String, Stat> stats = new HashMap<>();
var limit = bb.limit();
var field = new byte[FIELD_SIZE];
while (bb.position() < limit) {
var fieldCurrentIndex = 0;
while (bb.position() < limit) {
var fieldByte = bb.get();
if (fieldByte == ';')
break;
field[fieldCurrentIndex++] = fieldByte;
}
var fieldStr = new String(field, 0, fieldCurrentIndex);
var number = 0;
var sign = 1;
while (bb.position() < limit) {
var numberByte = bb.get();
if (numberByte == '-')
sign = -1;
else if (numberByte == '\n')
break;
else if (numberByte != '.')
number = number * 10 + (numberByte - '0');
}
stats.computeIfAbsent(fieldStr,
k -> new Stat())
.update(sign * number);
}
return stats;
}
private static Stream<ByteBuffer> fileMemoryStream(FileChannel fileChannel,
long chunkSize)
throws IOException {
var spliterator = Spliterators.spliteratorUnknownSize(fileMemoryIterator(fileChannel,
chunkSize),
Spliterator.IMMUTABLE);
return StreamSupport.stream(spliterator,
false);
}
private static Iterator<ByteBuffer> fileMemoryIterator(FileChannel fileChannel, long chunkSize) throws IOException {
return new Iterator<>() {
private final long size = fileChannel.size();
private long start = 0;
@Override
public boolean hasNext() {
return start < size;
}
@Override
public ByteBuffer next() {
try {
var buffer = fileChannel.map(MapMode.READ_ONLY,
start,
Math.min(chunkSize,
size - start));
var limmit = buffer.limit() - 1;
while (buffer.get(limmit) != '\n')
limmit--;
limmit++;
buffer.limit(limmit);
start += limmit;
return buffer;
}
catch (IOException ex) {
throw new UncheckedIOException(ex);
}
}
};
}
private static final class Stat {
private int min = Integer.MAX_VALUE;
private int max = Integer.MIN_VALUE;
private long sum = 0L;
private long count = 0L;
public static Stat combine(Stat m1,
Stat m2) {
var stat = new Stat();
stat.min = Math.min(m1.min, m2.min);
stat.max = Math.max(m1.max, m2.max);
stat.sum = m1.sum + m2.sum;
stat.count = m1.count + m2.count;
return stat;
}
private void update(int value) {
this.min = Math.min(this.min, value);
this.max = Math.max(this.max, value);
this.sum += value;
this.count++;
}
@Override
public String toString() {
return round(min / 10.0) + "/" + round((sum / 10.0) / count) + "/" + round(max / 10.0);
}
private double round(double value) {
return Math.round(value * 10.0) / 10.0;
}
}
private static final class ManagedComputation {
static <T> T compute(final Supplier<T> supplier) {
var managedBlocker = new ManagedSupplier<>(supplier);
try {
ForkJoinPool.managedBlock(managedBlocker);
return managedBlocker.getResult();
}
catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RuntimeException(e);
}
}
private static class ManagedSupplier<T> implements ForkJoinPool.ManagedBlocker {
private final Supplier<T> task;
private T result;
private boolean isDone = false;
private ManagedSupplier(final Supplier<T> supplier) {
task = supplier;
}
@Override
public boolean block() {
result = task.get();
isDone = true;
return true;
}
@Override
public boolean isReleasable() {
return isDone;
}
T getResult() {
return result;
}
}
}
}