1brc/src/main/java/dev/morling/onebrc/CalculateAverage_thomaswue.java
Thomas Wuerthinger 036f9a01b1
Clean up, fine tuning, credit section for thomaswue (#646)
* Some clean up, fine tuning, removing non-supported options, added credit
section and additional comments.

* Put license header year back to 2023 to pass checks.

* Remove static linking (as it requires some more setup on the target
machine).
2024-01-29 22:19:23 +01:00

464 lines
17 KiB
Java

/*
* Copyright 2023 The original authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dev.morling.onebrc;
import java.io.IOException;
import java.nio.channels.FileChannel;
import java.util.*;
import java.util.concurrent.atomic.AtomicLong;
/**
* The solution starts a child worker process for the actual work such that clean up of the memory mapping can occur
* while the main process already returns with the result. The worker then memory maps the input file, creates a worker
* thread per available core, and then processes segments of size {@link #SEGMENT_SIZE} at a time. The segments are
* split into 3 parts and cursors for each of those parts are processing the segment simultaneously in the same thread.
* Results are accumulated into {@link Result} objects and a tree map is used to sequentially accumulate the results in
* the end.
*
* Runs in 0.40s on an Intel i9-13900K.
*
* Credit:
* Quan Anh Mai for branchless number parsing code
* Alfonso² Peterssen for suggesting memory mapping with unsafe and the subprocess idea
* Artsiom Korzun for showing the benefits of work stealing at 2MB segments instead of equal split between workers
*/
public class CalculateAverage_thomaswue {
private static final String FILE = "./measurements.txt";
private static final int MIN_TEMP = -999;
private static final int MAX_TEMP = 999;
private static final int MAX_NAME_LENGTH = 100;
private static final int MAX_CITIES = 10000;
private static final int SEGMENT_SIZE = 1 << 21;
private static final int HASH_TABLE_SIZE = 1 << 17;
public static void main(String[] args) throws IOException, InterruptedException {
// Start worker subprocess if this process is not the worker.
if (args.length == 0 || !("--worker".equals(args[0]))) {
spawnWorker();
return;
}
int numberOfWorkers = Runtime.getRuntime().availableProcessors();
try (var fileChannel = FileChannel.open(java.nio.file.Path.of(FILE), java.nio.file.StandardOpenOption.READ)) {
long fileSize = fileChannel.size();
final long fileStart = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fileSize, java.lang.foreign.Arena.global()).address();
final long fileEnd = fileStart + fileSize;
final AtomicLong cursor = new AtomicLong(fileStart);
// Parallel processing of segments.
Thread[] threads = new Thread[numberOfWorkers];
List<Result>[] allResults = new List[numberOfWorkers];
for (int i = 0; i < threads.length; ++i) {
final int index = i;
threads[i] = new Thread(() -> {
List<Result> results = new ArrayList<>(MAX_CITIES);
parseLoop(cursor, fileEnd, fileStart, results);
allResults[index] = results;
});
threads[i].start();
}
for (Thread thread : threads) {
thread.join();
}
// Final output.
System.out.println(accumulateResults(allResults));
System.out.close();
}
}
private static void spawnWorker() throws IOException {
ProcessHandle.Info info = ProcessHandle.current().info();
ArrayList<String> workerCommand = new ArrayList<>();
info.command().ifPresent(workerCommand::add);
info.arguments().ifPresent(args -> workerCommand.addAll(Arrays.asList(args)));
workerCommand.add("--worker");
new ProcessBuilder().command(workerCommand).inheritIO().redirectOutput(ProcessBuilder.Redirect.PIPE)
.start().getInputStream().transferTo(System.out);
}
private static TreeMap<String, Result> accumulateResults(List<Result>[] allResults) {
TreeMap<String, Result> result = new TreeMap<>();
for (List<Result> resultArr : allResults) {
for (Result r : resultArr) {
Result current = result.putIfAbsent(r.calcName(), r);
if (current != null) {
current.accumulate(r);
}
}
}
return result;
}
private static Result findResult(long initialWord, long initialPos, Scanner scanner, Result[] results, List<Result> collectedResults) {
Result existingResult;
long word = initialWord;
long pos = initialPos;
long hash;
long nameAddress = scanner.pos();
// Search for ';', one long at a time. There are two common cases that a specially treated:
// (b) the ';' is found in the first 16 bytes
if (pos != 0) {
// Special case for when the ';' is found in the first 8 bytes.
pos = Long.numberOfTrailingZeros(pos) >>> 3;
scanner.add(pos);
word = mask(word, pos);
hash = word;
int index = hashToIndex(hash, results);
existingResult = results[index];
if (existingResult != null && existingResult.lastNameLong == word) {
return existingResult;
}
scanner.setPos(nameAddress + pos);
}
else {
// Special case for when the ';' is found in bytes 9-16.
scanner.add(8);
hash = word;
long prevWord = word;
word = scanner.getLong();
pos = findDelimiter(word);
if (pos != 0) {
pos = Long.numberOfTrailingZeros(pos) >>> 3;
scanner.add(pos);
word = mask(word, pos);
hash ^= word;
int index = hashToIndex(hash, results);
existingResult = results[index];
if (existingResult != null && existingResult.lastNameLong == word && existingResult.secondLastNameLong == prevWord) {
return existingResult;
}
scanner.setPos(nameAddress + pos + 8);
}
else {
// Slow-path for when the ';' could not be found in the first 16 bytes.
scanner.add(8);
hash ^= word;
while (true) {
word = scanner.getLong();
pos = findDelimiter(word);
if (pos != 0) {
pos = Long.numberOfTrailingZeros(pos) >>> 3;
scanner.add(pos);
word = mask(word, pos);
hash ^= word;
break;
}
else {
scanner.add(8);
hash ^= word;
}
}
}
}
// Save length of name for later.
int nameLength = (int) (scanner.pos() - nameAddress);
// Final calculation for index into hash table.
int tableIndex = hashToIndex(hash, results);
outer: while (true) {
existingResult = results[tableIndex];
if (existingResult == null) {
existingResult = newEntry(results, nameAddress, tableIndex, nameLength, scanner, collectedResults);
}
// Check for collision.
int i = 0;
for (; i < nameLength + 1 - 8; i += 8) {
if (scanner.getLongAt(existingResult.nameAddress + i) != scanner.getLongAt(nameAddress + i)) {
// Collision error, try next.
tableIndex = (tableIndex + 31) & (results.length - 1);
continue outer;
}
}
int remainingShift = (64 - (nameLength + 1 - i) << 3);
if (existingResult.lastNameLong == (scanner.getLongAt(nameAddress + i) << remainingShift)) {
break;
}
else {
// Collision error, try next.
tableIndex = (tableIndex + 31) & (results.length - 1);
}
}
return existingResult;
}
private static long nextNewLine(long prev) {
while (true) {
long currentWord = Scanner.UNSAFE.getLong(prev);
long pos = findNewLine(currentWord);
if (pos != 0) {
prev += Long.numberOfTrailingZeros(pos) >>> 3;
break;
}
else {
prev += 8;
}
}
return prev;
}
// Main parse loop.
private static Result[] parseLoop(AtomicLong counter, long fileEnd, long fileStart, List<Result> collectedResults) {
Result[] results = new Result[HASH_TABLE_SIZE];
while (true) {
long current = counter.addAndGet(SEGMENT_SIZE) - SEGMENT_SIZE;
if (current >= fileEnd) {
return results;
}
long segmentEnd = nextNewLine(Math.min(fileEnd - 1, current + SEGMENT_SIZE));
long segmentStart;
if (current == fileStart) {
segmentStart = current;
}
else {
segmentStart = nextNewLine(current) + 1;
}
long dist = (segmentEnd - segmentStart) / 3;
long midPoint1 = nextNewLine(segmentStart + dist);
long midPoint2 = nextNewLine(segmentStart + dist + dist);
Scanner scanner1 = new Scanner(segmentStart, midPoint1);
Scanner scanner2 = new Scanner(midPoint1 + 1, midPoint2);
Scanner scanner3 = new Scanner(midPoint2 + 1, segmentEnd);
while (true) {
if (!scanner1.hasNext()) {
break;
}
if (!scanner2.hasNext()) {
break;
}
if (!scanner3.hasNext()) {
break;
}
long word1 = scanner1.getLong();
long word2 = scanner2.getLong();
long word3 = scanner3.getLong();
long pos1 = findDelimiter(word1);
long pos2 = findDelimiter(word2);
long pos3 = findDelimiter(word3);
Result existingResult1 = findResult(word1, pos1, scanner1, results, collectedResults);
Result existingResult2 = findResult(word2, pos2, scanner2, results, collectedResults);
Result existingResult3 = findResult(word3, pos3, scanner3, results, collectedResults);
long number1 = scanNumber(scanner1);
long number2 = scanNumber(scanner2);
long number3 = scanNumber(scanner3);
record(existingResult1, number1);
record(existingResult2, number2);
record(existingResult3, number3);
}
while (scanner1.hasNext()) {
long word = scanner1.getLong();
long pos = findDelimiter(word);
record(findResult(word, pos, scanner1, results, collectedResults), scanNumber(scanner1));
}
while (scanner2.hasNext()) {
long word = scanner2.getLong();
long pos = findDelimiter(word);
record(findResult(word, pos, scanner2, results, collectedResults), scanNumber(scanner2));
}
while (scanner3.hasNext()) {
long word = scanner3.getLong();
long pos = findDelimiter(word);
record(findResult(word, pos, scanner3, results, collectedResults), scanNumber(scanner3));
}
}
}
private static long scanNumber(Scanner scanPtr) {
scanPtr.add(1);
long numberWord = scanPtr.getLong();
int decimalSepPos = Long.numberOfTrailingZeros(~numberWord & 0x10101000);
long number = convertIntoNumber(decimalSepPos, numberWord);
scanPtr.add((decimalSepPos >>> 3) + 3);
return number;
}
private static void record(Result existingResult, long number) {
if (number < existingResult.min) {
existingResult.min = (short) number;
}
if (number > existingResult.max) {
existingResult.max = (short) number;
}
existingResult.sum += number;
existingResult.count++;
}
private static int hashToIndex(long hash, Result[] results) {
long hashAsInt = hash ^ (hash >>> 37) ^ (hash >>> 17);
return (int) (hashAsInt & (results.length - 1));
}
private static long mask(long word, long pos) {
return (word << ((7 - pos) << 3));
}
// Special method to convert a number in the ascii number into an int without branches created by Quan Anh Mai.
private static long convertIntoNumber(int decimalSepPos, long numberWord) {
int shift = 28 - decimalSepPos;
// signed is -1 if negative, 0 otherwise
long signed = (~numberWord << 59) >> 63;
long designMask = ~(signed & 0xFF);
// Align the number to a specific position and transform the ascii to digit value
long digits = ((numberWord & designMask) << shift) & 0x0F000F0F00L;
// Now digits is in the form 0xUU00TTHH00 (UU: units digit, TT: tens digit, HH: hundreds digit)
// 0xUU00TTHH00 * (100 * 0x1000000 + 10 * 0x10000 + 1) =
// 0x000000UU00TTHH00 + 0x00UU00TTHH000000 * 10 + 0xUU00TTHH00000000 * 100
long absValue = ((digits * 0x640a0001) >>> 32) & 0x3FF;
return (absValue ^ signed) - signed;
}
private static long findDelimiter(long word) {
long input = word ^ 0x3B3B3B3B3B3B3B3BL;
long tmp = (input - 0x0101010101010101L) & ~input & 0x8080808080808080L;
return tmp;
}
private static long findNewLine(long word) {
long input = word ^ 0x0A0A0A0A0A0A0A0AL;
long tmp = (input - 0x0101010101010101L) & ~input & 0x8080808080808080L;
return tmp;
}
private static Result newEntry(Result[] results, long nameAddress, int hash, int nameLength, Scanner scanner, List<Result> collectedResults) {
Result r = new Result();
results[hash] = r;
int i = 0;
for (; i < nameLength + 1 - Long.BYTES; i += Long.BYTES) {
}
if (nameLength + 1 > 8) {
r.secondLastNameLong = scanner.getLongAt(nameAddress + i - 8);
}
int remainingShift = (64 - (nameLength + 1 - i) << 3);
long lastWord = (scanner.getLongAt(nameAddress + i) << remainingShift);
r.lastNameLong = lastWord;
r.nameAddress = nameAddress;
collectedResults.add(r);
return r;
}
private static class Result {
long lastNameLong, secondLastNameLong;
short min, max;
int count;
long sum;
long nameAddress;
private Result() {
this.min = MAX_TEMP;
this.max = MIN_TEMP;
}
public String toString() {
return round(((double) min) / 10.0) + "/" + round((((double) sum) / 10.0) / count) + "/" + round(((double) max) / 10.0);
}
private static double round(double value) {
return Math.round(value * 10.0) / 10.0;
}
private void accumulate(Result other) {
if (other.min < min) {
min = other.min;
}
if (other.max > max) {
max = other.max;
}
sum += other.sum;
count += other.count;
}
public String calcName() {
Scanner scanner = new Scanner(nameAddress, nameAddress + MAX_NAME_LENGTH + 1);
int nameLength = 0;
while (scanner.getByteAt(nameAddress + nameLength) != ';') {
nameLength++;
}
byte[] array = new byte[nameLength];
for (int i = 0; i < nameLength; ++i) {
array[i] = scanner.getByteAt(nameAddress + i);
}
return new String(array, java.nio.charset.StandardCharsets.UTF_8);
}
}
private static class Scanner {
private static final sun.misc.Unsafe UNSAFE = initUnsafe();
private long pos, end;
private static sun.misc.Unsafe initUnsafe() {
try {
java.lang.reflect.Field theUnsafe = sun.misc.Unsafe.class.getDeclaredField("theUnsafe");
theUnsafe.setAccessible(true);
return (sun.misc.Unsafe) theUnsafe.get(sun.misc.Unsafe.class);
}
catch (NoSuchFieldException | IllegalAccessException e) {
throw new RuntimeException(e);
}
}
public Scanner(long start, long end) {
this.pos = start;
this.end = end;
}
boolean hasNext() {
return pos < end;
}
long pos() {
return pos;
}
void add(long delta) {
pos += delta;
}
long getLong() {
return UNSAFE.getLong(pos);
}
long getLongAt(long pos) {
return UNSAFE.getLong(pos);
}
byte getByteAt(long pos) {
return UNSAFE.getByte(pos);
}
long getLongAt(long pos, long[] array) {
return UNSAFE.getLong(array, pos + sun.misc.Unsafe.ARRAY_LONG_BASE_OFFSET);
}
void setPos(long l) {
this.pos = l;
}
}
}