Exit earlier from loop when a new Result is created (#668)

* Exit earlier from loop when a new Result is created

 *   3) Make a cache of long[] name to String, to avoid `ByteBuffer.allocate`
 * and creating new UTF-8 strings. I didn't profile, so it's just a guess
 * that this map will be a bit faster. Although it's outside the main loop, so
 * not a big difference ...;
 *   4) Exit earlier from loop if a new entry was created.

* revert: Remove cache to city name

* As I was not able to make it faster... make it slower

As I was not able to make it faster ... so I'll make it slower,
because my current solution should *not* stay at the top, as it added
basically nothing.
This commit is contained in:
tivrfoa 2024-02-01 07:49:47 -03:00 committed by GitHub
parent e7c92094bd
commit fdd539e1f9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -38,34 +38,44 @@ import java.util.concurrent.atomic.AtomicInteger;
* already, and maybe even 1st place for the 10k too. * already, and maybe even 1st place for the 10k too.
* See: https://github.com/gunnarmorling/1brc/pull/606 * See: https://github.com/gunnarmorling/1brc/pull/606
* *
* But as I was already coding something, I'll submit just to * As I was not able to make it faster ... so I'll make it slower,
* see if it will be faster than his *previous* 10k time of * because my current solution should *not* stay at the top, as it added
* 00:04.516 * basically nothing.
*
* Changes:
* It's a similar idea of my previous solution, that if you split
* the chunks evenly, some threads might finish much faster and
* stay idle, so:
* 1) Create more chunks than threads, so the ones that finish first
* can do something;
* 2) Decrease chunk sizes as we get closer to the end of the file.
*/ */
public class CalculateAverage_tivrfoa { public class CalculateAverage_tivrfoa {
private static final String FILE = "./measurements.txt"; private static final String FILE = "./measurements.txt";
private static final int MIN_TEMP = -999;
private static final int MAX_TEMP = 999; private static final int MAX_CITIES = 10_000;
private static final int BUCKETS_LEN = 1 << 17;
private static final int LAST_BUCKET_ENTRY = BUCKETS_LEN - 1;
private static final int NUM_CPUS = Runtime.getRuntime().availableProcessors();
private static final AtomicInteger chunkIdx = new AtomicInteger();
private static long[] chunks;
private static int numChunks;
// Holding the current result for a single city. // Holding the current result for a single city.
private static class Result { private static class Result {
long lastNameLong, secondLastNameLong; long lastNameLong;
long[] name; long[] name;
int count; int count;
short min, max; short min, max;
long sum; long sum;
private Result() { private Result(short number, long nameAddress, byte nameLength, Scanner scanner) {
this.min = MAX_TEMP; this.min = number;
this.max = MIN_TEMP; this.max = number;
this.sum = number;
this.count = 1;
name = new long[(nameLength / Long.BYTES) + 1];
int pos = 0, i = 0;
for (; i < nameLength + 1 - Long.BYTES; i += Long.BYTES) {
name[pos++] = scanner.getLongAt(nameAddress + i);
}
int remainingShift = (64 - (nameLength + 1 - i) << 3);
lastNameLong = (scanner.getLongAt(nameAddress + i) << remainingShift);
name[pos] = lastNameLong >> remainingShift;
} }
public String toString() { public String toString() {
@ -88,6 +98,17 @@ public class CalculateAverage_tivrfoa {
count += other.count; count += other.count;
} }
private void add(short number) {
if (number < min) {
min = number;
}
if (number > max) {
max = number;
}
sum += number;
count++;
}
public String calcName() { public String calcName() {
ByteBuffer bb = ByteBuffer.allocate(name.length * Long.BYTES).order(ByteOrder.nativeOrder()); ByteBuffer bb = ByteBuffer.allocate(name.length * Long.BYTES).order(ByteOrder.nativeOrder());
bb.asLongBuffer().put(name); bb.asLongBuffer().put(name);
@ -99,134 +120,89 @@ public class CalculateAverage_tivrfoa {
} }
} }
private static final int NUM_CPUS = Runtime.getRuntime().availableProcessors(); /**
private static final AtomicInteger chunkIdx = new AtomicInteger(); * From:
private static long[] chunks; * https://github.com/OpenHFT/Zero-Allocation-Hashing/blob/ea/src/main/java/net/openhft/hashing/XXH3.java
private static int numChunks; *
* Less collisions, but it will make the code slower. xD
*
* One interesting thing about Thomas' solution that I
* started to work with (d0a28599), is that it basically does not have
* any collision for the small data set (sometimes none!), but it
* has lots of collisions for the 10k, hence its poor performance.
*
*/
private static long XXH3_avalanche(long h64) {
h64 ^= h64 >>> 37;
h64 *= 0x165667919E3779F9L;
return h64 ^ (h64 >>> 32);
}
private static final class SolveChunk extends Thread { private static final class SolveChunk extends Thread {
private long chunkStart, chunkEnd; private int chunkStartIdx;
private Result[] results = new Result[10_000]; private Result[] results = new Result[MAX_CITIES];
private Result[] buckets = new Result[1 << 17]; private Result[] buckets = new Result[BUCKETS_LEN];
private int resIdx = 0; private int resIdx = 0;
public SolveChunk(long chunkStart, long chunkEnd) { public SolveChunk(int chunkStartIdx) {
this.chunkStart = chunkStart; this.chunkStartIdx = chunkStartIdx;
this.chunkEnd = chunkEnd;
} }
@Override @Override
public void run() { public void run() {
parseLoop(); for (; chunkStartIdx < numChunks; chunkStartIdx = chunkIdx.getAndIncrement()) {
int chunk = chunkIdx.getAndIncrement(); Scanner scanner = new Scanner(chunks[chunkStartIdx], chunks[chunkStartIdx + 1]);
if (chunk < numChunks) {
chunkStart = chunks[chunk];
chunkEnd = chunks[chunk + 1];
run();
}
}
private void parseLoop() {
Scanner scanner = new Scanner(chunkStart, chunkEnd);
long word = scanner.getLong(); long word = scanner.getLong();
long pos = findDelimiter(word); long pos = findDelimiter(word);
while (scanner.hasNext()) { while (scanner.hasNext()) {
long nameAddress = scanner.pos(); long nameAddress = scanner.pos();
long hash = 0; long hash = 0;
// Search for ';', one long at a time.
if (pos != 0) {
pos = Long.numberOfTrailingZeros(pos) >>> 3;
scanner.add(pos);
word = mask(word, pos);
hash = word;
int number = scanNumber(scanner);
long nextWord = scanner.getLong();
long nextPos = findDelimiter(nextWord);
Result existingResult = buckets[hashToIndex(hash, buckets)];
if (existingResult != null && existingResult.lastNameLong == word) {
word = nextWord;
pos = nextPos;
record(existingResult, number);
continue;
}
scanner.setPos(nameAddress + pos);
}
else {
scanner.add(8);
hash = word;
long prevWord = word;
word = scanner.getLong();
pos = findDelimiter(word);
if (pos != 0) {
pos = Long.numberOfTrailingZeros(pos) >>> 3;
scanner.add(pos);
word = mask(word, pos);
hash ^= word;
Result existingResult = buckets[hashToIndex(hash, buckets)];
if (existingResult != null && existingResult.lastNameLong == word && existingResult.secondLastNameLong == prevWord) {
int number = scanNumber(scanner);
word = scanner.getLong();
pos = findDelimiter(word);
record(existingResult, number);
continue;
}
}
else {
scanner.add(8);
hash ^= word;
while (true) { while (true) {
word = scanner.getLong();
pos = findDelimiter(word);
if (pos != 0) { if (pos != 0) {
pos = Long.numberOfTrailingZeros(pos) >>> 3; pos = Long.numberOfTrailingZeros(pos) >>> 3;
scanner.add(pos); scanner.add(pos);
word = mask(word, pos); word = mask(word, pos);
hash ^= word; hash ^= XXH3_avalanche(word);
break; break;
} }
else { else {
scanner.add(8); scanner.add(8);
hash ^= word; hash ^= XXH3_avalanche(word);
}
}
}
} }
// Save length of name for later. word = scanner.getLong();
int nameLength = (int) (scanner.pos() - nameAddress); pos = findDelimiter(word);
int number = scanNumber(scanner); }
// Final calculation for index into hash table. byte nameLength = (byte) (scanner.pos() - nameAddress);
int tableIndex = hashToIndex(hash, buckets); short number = scanNumber(scanner);
int tableIndex = hashToIndex(hash);
outer: while (true) { outer: while (true) {
Result existingResult = buckets[tableIndex]; Result existingResult = buckets[tableIndex];
if (existingResult == null) { if (existingResult == null) {
existingResult = newEntry(buckets, nameAddress, tableIndex, nameLength, scanner); var newResult = new Result(number, nameAddress, nameLength, scanner);
results[resIdx++] = existingResult; buckets[tableIndex] = newResult;
results[resIdx++] = newResult;
break;
} }
// Check for collision.
int i = 0; int i = 0;
int namePos = 0; int namePos = 0;
for (; i < nameLength + 1 - 8; i += 8) { for (; i < nameLength + 1 - 8; i += 8) {
if (namePos >= existingResult.name.length || existingResult.name[namePos++] != scanner.getLongAt(nameAddress + i)) { if (namePos >= existingResult.name.length || existingResult.name[namePos++] != scanner.getLongAt(nameAddress + i)) {
tableIndex = (tableIndex + 31) & (buckets.length - 1); tableIndex = (tableIndex + 31) & (LAST_BUCKET_ENTRY);
continue outer; continue outer;
} }
} }
int remainingShift = (64 - (nameLength + 1 - i) << 3); int remainingShift = (64 - (nameLength + 1 - i) << 3);
if (((existingResult.lastNameLong ^ (scanner.getLongAt(nameAddress + i) << remainingShift)) == 0)) { if (((existingResult.lastNameLong ^ (scanner.getLongAt(nameAddress + i) << remainingShift)) == 0)) {
record(existingResult, number); existingResult.add(number);
break; break;
} }
else { else {
// Collision error, try next. tableIndex = (tableIndex + 31) & (LAST_BUCKET_ENTRY);
tableIndex = (tableIndex + 31) & (buckets.length - 1);
} }
} }
@ -235,6 +211,7 @@ public class CalculateAverage_tivrfoa {
} }
} }
} }
}
private static void mergeIntoFinalMap(TreeMap<String, Result> map, Result[] newResults) { private static void mergeIntoFinalMap(TreeMap<String, Result> map, Result[] newResults) {
for (var r : newResults) { for (var r : newResults) {
@ -247,77 +224,49 @@ public class CalculateAverage_tivrfoa {
} }
} }
public static void main(String[] args) throws Exception { public static void main(String[] args) throws InterruptedException, IOException {
boolean runTrick = true;
for (var arg : args) {
if (arg.equals("--worker")) {
runTrick = false;
break;
}
}
if (runTrick) {
spawnWorker();
return;
}
chunks = getSegments(NUM_CPUS); chunks = getSegments(NUM_CPUS);
numChunks = chunks.length - 1; numChunks = chunks.length - 1;
final SolveChunk[] threads = new SolveChunk[NUM_CPUS]; final SolveChunk[] threads = new SolveChunk[NUM_CPUS];
chunkIdx.set(NUM_CPUS); chunkIdx.set(NUM_CPUS);
for (int i = 0; i < NUM_CPUS; i++) { for (int i = 0; i < NUM_CPUS; i++) {
threads[i] = new SolveChunk(chunks[i], chunks[i + 1]); threads[i] = new SolveChunk(i);
threads[i].start(); threads[i].start();
} }
System.out.println(getMap(threads));
System.out.close();
}
private static TreeMap<String, Result> getMap(SolveChunk[] threads) throws InterruptedException {
TreeMap<String, Result> map = new TreeMap<>(); TreeMap<String, Result> map = new TreeMap<>();
for (int i = 0; i < NUM_CPUS; ++i) { threads[0].join();
for (var r : threads[0].results) {
if (r == null)
break;
map.put(r.calcName(), r);
}
for (int i = 1; i < NUM_CPUS; ++i) {
threads[i].join(); threads[i].join();
mergeIntoFinalMap(map, threads[i].results); mergeIntoFinalMap(map, threads[i].results);
} }
System.out.println(map); return map;
System.out.close();
} }
private static void spawnWorker() throws IOException { private static short scanNumber(Scanner scanPtr) {
ProcessHandle.Info info = ProcessHandle.current().info();
ArrayList<String> workerCommand = new ArrayList<>();
info.command().ifPresent(workerCommand::add);
info.arguments().ifPresent(args -> workerCommand.addAll(Arrays.asList(args)));
workerCommand.add("--worker");
new ProcessBuilder()
.command(workerCommand)
.inheritIO()
.redirectOutput(ProcessBuilder.Redirect.PIPE)
.start()
.getInputStream()
.transferTo(System.out);
}
private static int scanNumber(Scanner scanPtr) {
scanPtr.add(1); scanPtr.add(1);
long numberWord = scanPtr.getLong(); long numberWord = scanPtr.getLong();
int decimalSepPos = Long.numberOfTrailingZeros(~numberWord & 0x10101000); int decimalSepPos = Long.numberOfTrailingZeros(~numberWord & 0x10101000);
int number = convertIntoNumber(decimalSepPos, numberWord); int number = convertIntoNumber(decimalSepPos, numberWord);
scanPtr.add((decimalSepPos >>> 3) + 3); scanPtr.add((decimalSepPos >>> 3) + 3);
return number; return (short) number;
} }
private static void record(Result existingResult, int number) { private static int hashToIndex(long hash) {
if (number < existingResult.min) {
existingResult.min = (short) number;
}
if (number > existingResult.max) {
existingResult.max = (short) number;
}
existingResult.sum += number;
existingResult.count++;
}
private static int hashToIndex(long hash, Result[] results) {
int hashAsInt = (int) (hash ^ (hash >>> 28)); int hashAsInt = (int) (hash ^ (hash >>> 28));
int finalHash = (hashAsInt ^ (hashAsInt >>> 17)); int finalHash = (hashAsInt ^ (hashAsInt >>> 17));
return (finalHash & (results.length - 1)); return (finalHash & LAST_BUCKET_ENTRY);
} }
private static long mask(long word, long pos) { private static long mask(long word, long pos) {
@ -346,28 +295,6 @@ public class CalculateAverage_tivrfoa {
return tmp; return tmp;
} }
private static Result newEntry(Result[] results, long nameAddress, int hash, int nameLength, Scanner scanner) {
Result r = new Result();
results[hash] = r;
long[] name = new long[(nameLength / Long.BYTES) + 1];
int pos = 0;
int i = 0;
for (; i < nameLength + 1 - Long.BYTES; i += Long.BYTES) {
name[pos++] = scanner.getLongAt(nameAddress + i);
}
if (pos > 0) {
r.secondLastNameLong = name[pos - 1];
}
int remainingShift = (64 - (nameLength + 1 - i) << 3);
long lastWord = (scanner.getLongAt(nameAddress + i) << remainingShift);
r.lastNameLong = lastWord;
name[pos] = lastWord >> remainingShift;
r.name = name;
return r;
}
/** /**
* - Split 70% of the file in even chunks for all cpus; * - Split 70% of the file in even chunks for all cpus;
* - Create smaller chunks for the remainder of the file. * - Create smaller chunks for the remainder of the file.