improve speed, thanks to the following improvements: (#550)

* improve speed, thanks to the following improvements:
- loop unrolling and eleminating extra calculations
- eleminating instance level variable access
- quicker equals check, checking long by long chunks instead of bytes
- update GraalVM version to the latest

* faster equals check

* fix equals bug in 10K, more optimizations on equals and calculate hash parts

* New solution optimized for Linux/AMD hardware

* Optimize solution, try to fix 10K bug on native

* Optimize solution, move records to a local field

* test timing

* revert back accidentally pushed code

---------

Co-authored-by: Yavuz Tas <yavuz.tas@ing.com>
This commit is contained in:
Yavuz Tas 2024-01-29 21:02:20 +01:00 committed by GitHub
parent 886f0cdb4d
commit a82cf2ceb7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 335 additions and 193 deletions

View File

@ -15,5 +15,11 @@
# limitations under the License. # limitations under the License.
# #
JAVA_OPTS="-Xms128m -Xmx128m -XX:MaxGCPauseMillis=1 -XX:-AlwaysPreTouch -XX:+UseSerialGC --enable-preview" if [ -f target/CalculateAverage_yavuztas_image ]; then
java $JAVA_OPTS --class-path target/average-1.0.0-SNAPSHOT.jar dev.morling.onebrc.CalculateAverage_yavuztas echo "Picking up existing native image 'target/CalculateAverage_yavuztas_image', delete the file to select JVM mode." 1>&2
target/CalculateAverage_yavuztas_image
else
JAVA_OPTS="-XX:MaxGCPauseMillis=1 -XX:-AlwaysPreTouch -XX:+UseSerialGC -XX:+TieredCompilation --enable-preview"
echo "Choosing to run the app in JVM mode as no native image was found, use prepare_yavuztas.sh to generate." 1>&2
java $JAVA_OPTS --class-path target/average-1.0.0-SNAPSHOT.jar dev.morling.onebrc.CalculateAverage_yavuztas
fi

View File

@ -16,4 +16,9 @@
# #
source "$HOME/.sdkman/bin/sdkman-init.sh" source "$HOME/.sdkman/bin/sdkman-init.sh"
sdk use java 21.0.1-graal 1>&2 sdk use java 21.0.2-graal 1>&2
if [ ! -f target/CalculateAverage_yavuztas_image ]; then
NATIVE_IMAGE_OPTS="--initialize-at-build-time=dev.morling.onebrc.CalculateAverage_yavuztas --gc=epsilon -O3 -march=native -R:MaxHeapSize=128m -H:-GenLoopSafepoints --enable-preview"
native-image $NATIVE_IMAGE_OPTS -cp target/average-1.0.0-SNAPSHOT.jar -o target/CalculateAverage_yavuztas_image dev.morling.onebrc.CalculateAverage_yavuztas
fi

View File

@ -17,15 +17,16 @@ package dev.morling.onebrc;
import sun.misc.Unsafe; import sun.misc.Unsafe;
import java.io.IOException;
import java.lang.foreign.Arena; import java.lang.foreign.Arena;
import java.lang.reflect.Field; import java.lang.reflect.Field;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel; import java.nio.channels.FileChannel;
import java.nio.charset.StandardCharsets; import java.nio.charset.StandardCharsets;
import java.nio.file.Files; import java.nio.file.Files;
import java.nio.file.Path; import java.nio.file.Path;
import java.nio.file.StandardOpenOption; import java.nio.file.StandardOpenOption;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.TreeMap; import java.util.TreeMap;
import java.util.function.Consumer; import java.util.function.Consumer;
@ -35,8 +36,9 @@ public class CalculateAverage_yavuztas {
private static final Unsafe UNSAFE = unsafe(); private static final Unsafe UNSAFE = unsafe();
// Tried all there: MappedByteBuffer, MemorySegment and Unsafe // I compared all three: MappedByteBuffer, MemorySegment and Unsafe.
// Accessing the memory using Unsafe is still the fastest in my experience // Accessing the memory using Unsafe is still the fastest in my experience.
// However, I would never use it in production, single programming error will crash your app.
private static Unsafe unsafe() { private static Unsafe unsafe() {
try { try {
final Field f = Unsafe.class.getDeclaredField("theUnsafe"); final Field f = Unsafe.class.getDeclaredField("theUnsafe");
@ -48,296 +50,419 @@ public class CalculateAverage_yavuztas {
} }
} }
/**
* Extract bytes from a long
*/
private static long partial(long word, int length) {
final long mask = (~0L) << (length << 3);
return word & (~mask);
}
// Only one object, both for measurements and keys, less object creation in hotpots is always faster // Only one object, both for measurements and keys, less object creation in hotpots is always faster
static class Record { private static final class Record {
// keep memory starting address for each segment private final long start; // memory address of the underlying data
// since we use Unsafe, this is enough to align and fetch the data private final int length;
long segment; private final long word1;
int start; private final long word2;
int length; private final long wordLast;
int hash; private final int hash;
private Record next; // linked list to resolve hash collisions
private int min = 1000; // calculations over int is faster than double, we convert to double in the end only once private int min; // calculations over int is faster than double, we convert to double in the end only once
private int max = -1000; private int max;
private long sum; private long sum;
private long count; private int count;
public Record(long segment, int start, int length, int hash) { public Record(long start, int length, long word1, long word2, long wordLast, int hash, int temp) {
this.segment = segment;
this.start = start; this.start = start;
this.length = length; this.length = length;
this.word1 = word1;
this.word2 = word2;
this.wordLast = wordLast;
this.hash = hash; this.hash = hash;
this.min = temp;
this.max = temp;
this.sum = temp;
this.count = 1;
} }
@Override @Override
public boolean equals(Object o) { public boolean equals(Object o) {
final Record record = (Record) o; final Record record = (Record) o;
return equals(record.segment, record.start, record.length, record.hash); return equals(record.start, record.word1, record.word2, record.wordLast, record.length);
} }
/** private static boolean notEquals(long address1, long address2, int step) {
* Stateless equals, no Record object needed return UNSAFE.getLong(address1 + step) != UNSAFE.getLong(address2 + step);
*/ }
public boolean equals(long segment, int start, int length, int hash) {
if (this.length != length || this.hash != hash) private static boolean equalsComparingLongs(long start1, long start2, int length) {
// first shortcuts
if (length < 24)
return true;
if (length < 32)
return !notEquals(start1, start2, 16);
int step = 24; // starting from 3rd long
length -= step;
while (length >= 8) { // scan longs
if (notEquals(start1, start2, step)) {
return false;
}
length -= 8;
step += 8; // 8 bytes
}
return true;
}
private boolean equals(long start, long word1, long word2, long last, int length) {
if (this.word1 != word1)
return false;
if (this.word2 != word2)
return false; return false;
int i = 0; // bytes mismatch check // equals check is done by comparing longs instead of byte by byte check, this is faster
while (i < this.length return equalsComparingLongs(this.start, start, length) && this.wordLast == last;
&& UNSAFE.getByte(this.segment + this.start + i) == UNSAFE.getByte(segment + start + i)) {
i++;
}
return i == this.length;
}
@Override
public int hashCode() {
return this.hash;
} }
@Override @Override
public String toString() { public String toString() {
final byte[] bytes = new byte[this.length]; final byte[] bytes = new byte[this.length];
int i = 0; UNSAFE.copyMemory(null, this.start, bytes, Unsafe.ARRAY_BYTE_BASE_OFFSET, this.length);
while (i < this.length) {
bytes[i] = UNSAFE.getByte(this.segment + this.start + i++);
}
return new String(bytes, StandardCharsets.UTF_8); return new String(bytes, StandardCharsets.UTF_8);
} }
public Record collect(int temp) { private void collect(int temp) {
this.min = Math.min(this.min, temp); if (temp < this.min)
this.max = Math.max(this.max, temp); this.min = temp;
if (temp > this.max)
this.max = temp;
this.sum += temp; this.sum += temp;
this.count++; this.count++;
return this;
} }
public void merge(Record other) { private void merge(Record that) {
this.min = Math.min(this.min, other.min); if (that.min < this.min)
this.max = Math.max(this.max, other.max); this.min = that.min;
this.sum += other.sum; if (that.max > this.max)
this.count += other.count; this.max = that.max;
this.sum += that.sum;
this.count += that.count;
} }
public String measurements() { private String measurements() {
// here is only executed once for each unique key, so StringBuilder creation doesn't harm // here is only executed once for each unique key, so StringBuilder creation doesn't harm
final StringBuilder sb = new StringBuilder(14); final StringBuilder sb = new StringBuilder(14);
sb.append(this.min / 10.0); sb.append(round(this.min)).append("/");
sb.append("/"); sb.append(round(1.0 * this.sum / this.count)).append("/");
sb.append(round((this.sum / 10.0) / this.count)); sb.append(round(this.max));
sb.append("/");
sb.append(this.max / 10.0);
return sb.toString(); return sb.toString();
} }
} }
// Inspired by @spullara - customized hashmap on purpose // Inspired by @spullara - customized hashmap on purpose
// The main difference is we hold only one array instead of two // The main difference is we hold only one array instead of two, fewer objects is faster
static class RecordMap { private static final class RecordMap {
static final int SIZE = 1 << 15; // 32k - bigger bucket size less collisions // Bigger bucket size less collisions, but you have to find a sweet spot otherwise it is becoming slower.
static final int BITMASK = SIZE - 1; // Also works good enough for 10K stations
Record[] keys = new Record[SIZE]; private static final int SIZE = 1 << 14; // 16kb - enough for 10K
private static final int BITMASK = SIZE - 1;
private final Record[] keys = new Record[SIZE];
static int hashBucket(int hash) { // int collision;
private boolean hasNoRecord(int index) {
return this.keys[index] == null;
}
private Record getRecord(int index) {
return this.keys[index];
}
private static int hashBucket(int hash) {
hash = hash ^ (hash >>> 16); // naive bit spreading but surprisingly decreases collision :) hash = hash ^ (hash >>> 16); // naive bit spreading but surprisingly decreases collision :)
return hash & BITMASK; // fast modulo, to find bucket return hash & BITMASK; // fast modulo, to find bucket
} }
void putAndCollect(long segment, int start, int length, int hash, int temp) { private void putAndCollect(int hash, int temp, long start, int length, long word1, long word2, long wordLast) {
int bucket = hashBucket(hash); final int bucket = hashBucket(hash);
Record existing = this.keys[bucket]; if (hasNoRecord(bucket)) {
if (existing == null) { this.keys[bucket] = new Record(start, length, word1, word2, wordLast, hash, temp);
this.keys[bucket] = new Record(segment, start, length, hash)
.collect(temp);
return; return;
} }
if (!existing.equals(segment, start, length, hash)) { Record existing = getRecord(bucket);
// collision, linear probing to find a slot if (existing.equals(start, word1, word2, wordLast, length)) {
while ((existing = this.keys[++bucket & BITMASK]) != null && !existing.equals(segment, start, length, hash)) { existing.collect(temp);
// can be stuck here if all the buckets are full :( return;
// However, since the data set is max 10K (unique) this shouldn't happen }
// So, I'm happily leave here branchless :)
} // collision++;
if (existing == null) { // find possible slot by scanning the slot linked list
this.keys[bucket & BITMASK] = new Record(segment, start, length, hash) while (existing.next != null) {
.collect(temp); if (existing.next.equals(start, word1, word2, wordLast, length)) {
existing.next.collect(temp);
return; return;
} }
existing.collect(temp); existing = existing.next; // go on to next
} // collision++;
else {
existing.collect(temp);
} }
existing.next = new Record(start, length, word1, word2, wordLast, hash, temp);
} }
void putOrMerge(Record key) { private void putOrMerge(Record key) {
int bucket = hashBucket(key.hash); final int bucket = hashBucket(key.hash);
Record existing = this.keys[bucket]; if (hasNoRecord(bucket)) {
if (existing == null) { key.next = null;
this.keys[bucket] = key; this.keys[bucket] = key;
return; return;
} }
if (!existing.equals(key)) { Record existing = getRecord(bucket);
// collision, linear probing to find a slot if (existing.equals(key)) {
while ((existing = this.keys[++bucket & BITMASK]) != null && !existing.equals(key)) { existing.merge(key);
// can be stuck here if all the buckets are full :( return;
// However, since the data set is max 10K (unique keys) this shouldn't happen }
// So, I'm happily leave here branchless :)
} // collision++;
if (existing == null) { // find possible slot by scanning the slot linked list
this.keys[bucket & BITMASK] = key; while (existing.next != null) {
if (existing.next.equals(key)) {
existing.next.merge(key);
return; return;
} }
existing.merge(key); existing = existing.next; // go on to next
} // collision++;
else {
existing.merge(key);
} }
key.next = null;
existing.next = key;
} }
void forEach(Consumer<Record> consumer) { private void forEach(Consumer<Record> consumer) {
int pos = 0; int pos = 0;
Record key; Record key;
while (pos < this.keys.length) { while (pos < SIZE) {
if ((key = this.keys[pos++]) == null) { if ((key = this.keys[pos++]) == null) {
continue; continue;
} }
Record next = key.next;
consumer.accept(key); consumer.accept(key);
while (next != null) { // also traverse the records in the collision list
final Record tmp = next.next;
consumer.accept(next);
next = tmp;
}
} }
} }
void merge(RecordMap other) { private void merge(RecordMap other) {
other.forEach(this::putOrMerge); other.forEach(this::putOrMerge);
} }
} }
// One actor for one thread, no synchronization // One actor for one thread, no synchronization
static class RegionActor { private static final class RegionActor extends Thread {
final FileChannel channel; private final long startPos; // start of region memory address
final long startPos; private final int size;
final int size;
final RecordMap map = new RecordMap();
long segmentAddress;
int position;
Thread runner; // each actor has its own thread
public RegionActor(FileChannel channel, long startPos, int size) { private final RecordMap map = new RecordMap();
this.channel = channel;
public RegionActor(long startPos, int size) {
this.startPos = startPos; this.startPos = startPos;
this.size = size; this.size = size;
} }
void accumulate() { private static long getWord(long address) {
this.runner = new Thread(() -> { return UNSAFE.getLong(address);
try { }
// get the segment memory address, this is the only thing we need for Unsafe
this.segmentAddress = this.channel.map(FileChannel.MapMode.READ_ONLY, this.startPos, this.size, Arena.global()).address();
}
catch (IOException e) {
// no-op - skip intentionally, no handling for the purpose of this challenge
}
int start; // hasvalue & haszero
int keyHash; // adapted from https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
int length; private static long hasSemicolon(long word) {
while (this.position < this.size) { // semicolon pattern
byte b; final long hasVal = word ^ 0x3B3B3B3B3B3B3B3BL; // hasvalue
start = this.position; // save line start position return ((hasVal - 0x0101010101010101L) & ~hasVal & 0x8080808080808080L); // haszero
keyHash = UNSAFE.getByte(this.segmentAddress + this.position++); // first byte is guaranteed not to be ';' }
length = 1; // min key length
while ((b = UNSAFE.getByte(this.segmentAddress + this.position++)) != ';') { // read until semicolon private static int semicolonPos(long hasVal) {
keyHash = calculateHash(keyHash, b); // calculate key hash ahead, eleminates one more loop later return Long.numberOfTrailingZeros(hasVal) >>> 3;
length++; }
private static int decimalPos(long numberWord) {
return Long.numberOfTrailingZeros(~numberWord & 0x10101000);
}
private static final int MAX_INNER_LOOP_SIZE = 11;
@Override
public void run() {
long pointer = this.startPos;
final long size = pointer + this.size;
while (pointer < size) { // line start
long hash = 0; // reset hash
long s; // semicolon check word
final int pos; // semicolon position
long word1 = getWord(pointer);
if ((s = hasSemicolon(word1)) != 0) {
pos = semicolonPos(s);
// read temparature
final long numberWord = getWord(pointer + pos + 1);
final int decimalPos = decimalPos(numberWord);
final int temp = convertIntoNumber(decimalPos, numberWord);
word1 = partial(word1, pos); // last word
this.map.putAndCollect(completeHash(hash, word1), temp, pointer, pos, word1, 0, 0);
pointer += pos + (decimalPos >>> 3) + 4;
}
else {
long word2 = getWord(pointer + 8);
if ((s = hasSemicolon(word2)) != 0) {
pos = semicolonPos(s);
// read temparature
final int length = pos + 8;
final long numberWord = getWord(pointer + length + 1);
final int decimalPos = decimalPos(numberWord);
final int temp = convertIntoNumber(decimalPos, numberWord);
word2 = partial(word2, pos); // last word
this.map.putAndCollect(completeHash(hash, word1, word2), temp, pointer, length, word1, word2, 0);
pointer += length + (decimalPos >>> 3) + 4; // seek to the line end
} }
else {
long word = 0;
int length = 16;
hash = appendHash(hash, word1, word2);
// Let the compiler know the loop size ahead
// Then it's automatically unrolled
// Max key length is 13 longs, 2 we've read before, 11 left
for (int i = 0; i < MAX_INNER_LOOP_SIZE; i++) {
if ((s = hasSemicolon((word = getWord(pointer + length)))) != 0) {
break;
}
hash = appendHash(hash, word);
length += 8;
}
final int temp = readTemperature(); pos = semicolonPos(s);
this.map.putAndCollect(this.segmentAddress, start, length, keyHash, temp); length += pos;
// read temparature
final long numberWord = getWord(pointer + length + 1);
final int decimalPos = decimalPos(numberWord);
final int temp = convertIntoNumber(decimalPos, numberWord);
this.position++; // skip linebreak word = partial(word, pos); // last word
} this.map.putAndCollect(completeHash(hash, word), temp, pointer, length, word1, word2, word);
});
this.runner.start();
}
static int calculateHash(int hash, int b) { pointer += length + (decimalPos >>> 3) + 4; // seek to the line end
return 31 * hash + b; }
}
// 1. Inspired by @yemreinci - Reading temparature value without Double.parse
// 2. Inspired by @obourgain - Fetching first 4 bytes ahead, then masking
int readTemperature() {
int temp = 0;
// read 4 bytes ahead
final int first4 = UNSAFE.getInt(this.segmentAddress + this.position);
this.position += 3;
final byte b1 = (byte) first4; // first byte
final byte b2 = (byte) ((first4 >> 8) & 0xFF); // second byte
final byte b3 = (byte) ((first4 >> 16) & 0xFF); // third byte
if (b1 == '-') {
if (b3 == '.') {
temp -= 10 * (b2 - '0') + (byte) ((first4 >> 24) & 0xFF) - '0'; // fourth byte
this.position++;
}
else {
this.position++; // skip dot
temp -= 100 * (b2 - '0') + 10 * (b3 - '0') + UNSAFE.getByte(this.segmentAddress + this.position++) - '0'; // fifth byte
}
}
else {
if (b2 == '.') {
temp = 10 * (b1 - '0') + b3 - '0';
}
else {
temp = 100 * (b1 - '0') + 10 * (b2 - '0') + (byte) ((first4 >> 24) & 0xFF) - '0'; // fourth byte
this.position++;
} }
} }
}
return temp; // Hashes are calculated by a Mersenne Prime (1 << 7) -1
// This is faster than multiplication in some machines
private static long appendHash(long hash, long word) {
return (hash << 7) - hash + word;
}
private static long appendHash(long hash, long word1, long word2) {
hash = (hash << 7) - hash + word1;
return (hash << 7) - hash + word2;
}
private static int completeHash(long hash, long partial) {
hash = (hash << 7) - hash + partial;
return (int) (hash ^ (hash >>> 25));
}
private static int completeHash(long hash, long word1, long word2) {
hash = (hash << 7) - hash + word1;
hash = (hash << 7) - hash + word2;
return (int) hash ^ (int) (hash >>> 25);
}
// Credits to @merrykitty. Magical solution to parse temparature values branchless!
// Taken as without modification, comments belong to @merrykitty
private static int convertIntoNumber(int decimalSepPos, long numberWord) {
final int shift = 28 - decimalSepPos;
// signed is -1 if negative, 0 otherwise
final long signed = (~numberWord << 59) >> 63;
final long designMask = ~(signed & 0xFF);
// Align the number to a specific position and transform the ascii code
// to actual digit value in each byte
final long digits = ((numberWord & designMask) << shift) & 0x0F000F0F00L;
// Now digits is in the form 0xUU00TTHH00 (UU: units digit, TT: tens digit, HH: hundreds digit)
// 0xUU00TTHH00 * (100 * 0x1000000 + 10 * 0x10000 + 1) =
// 0x000000UU00TTHH00 +
// 0x00UU00TTHH000000 * 10 +
// 0xUU00TTHH00000000 * 100
// Now TT * 100 has 2 trailing zeroes and HH * 100 + TT * 10 + UU < 0x400
// This results in our value lies in the bit 32 to 41 of this product
// That was close :)
final long absValue = ((digits * 0x640a0001) >>> 32) & 0x3FF;
final long value = (absValue ^ signed) - signed;
return (int) value;
} }
/** /**
* blocks until the map is fully collected * blocks until the map is fully collected
*/ */
RecordMap get() throws InterruptedException { private RecordMap get() throws InterruptedException {
this.runner.join(); join();
return this.map; return this.map;
} }
} }
private static double round(double value) { private static double round(double value) {
return Math.round(value * 10.0) / 10.0; return Math.round(value) / 10.0;
} }
/** /**
* Scans the given buffer to the left * Scans the given buffer to the left
*/ */
private static long findClosestLineEnd(long start, int size, FileChannel channel) throws IOException { private static long findClosestLineEnd(long start, int size) {
final long position = start + size; long position = start + size;
final long left = Math.max(position - 101, 0); while (UNSAFE.getByte(--position) != '\n') {
final ByteBuffer buffer = ByteBuffer.allocate(101); // enough size to find at least one '\n' // read until a linebreak
if (channel.read(buffer.clear(), left) != -1) { size--;
int bufferPos = buffer.position() - 1;
while (buffer.get(bufferPos) != '\n') {
bufferPos--;
size--;
}
} }
return size; return size;
} }
public static void main(String[] args) throws IOException, InterruptedException { private static boolean isWorkerProcess(String[] args) {
return Arrays.asList(args).contains("--worker");
}
var concurrency = Runtime.getRuntime().availableProcessors(); private static void runAsWorker() throws Exception {
final ProcessHandle.Info info = ProcessHandle.current().info();
final List<String> commands = new ArrayList<>();
info.command().ifPresent(commands::add);
info.arguments().ifPresent(args -> commands.addAll(Arrays.asList(args)));
commands.add("--worker");
new ProcessBuilder()
.command(commands)
.start()
.getInputStream()
.transferTo(System.out);
}
public static void main(String[] args) throws Exception {
// Dased on @thomaswue's idea, to cut unmapping delay.
// Strangely, unmapping delay doesn't occur on macOS/M1 however in Linux/AMD it's substantial - ~200ms
if (!isWorkerProcess(args)) {
runAsWorker();
return;
}
var concurrency = 2 * Runtime.getRuntime().availableProcessors();
final long fileSize = Files.size(FILE); final long fileSize = Files.size(FILE);
long regionSize = fileSize / concurrency; long regionSize = fileSize / concurrency;
@ -353,30 +478,36 @@ public class CalculateAverage_yavuztas {
long startPos = 0; long startPos = 0;
final FileChannel channel = (FileChannel) Files.newByteChannel(FILE, StandardOpenOption.READ); final FileChannel channel = (FileChannel) Files.newByteChannel(FILE, StandardOpenOption.READ);
// get the memory address, this is the only thing we need for Unsafe
final long memoryAddress = channel.map(FileChannel.MapMode.READ_ONLY, startPos, fileSize, Arena.global()).address();
final RegionActor[] actors = new RegionActor[concurrency]; final RegionActor[] actors = new RegionActor[concurrency];
for (int i = 0; i < concurrency; i++) { for (int i = 0; i < concurrency; i++) {
// calculate boundaries // calculate boundaries
long maxSize = (startPos + regionSize > fileSize) ? fileSize - startPos : regionSize; long maxSize = (startPos + regionSize > fileSize) ? fileSize - startPos : regionSize;
// shift position to back until we find a linebreak // shift position to back until we find a linebreak
maxSize = findClosestLineEnd(startPos, (int) maxSize, channel); maxSize = findClosestLineEnd(memoryAddress + startPos, (int) maxSize);
final RegionActor region = (actors[i] = new RegionActor(channel, startPos, (int) maxSize)); final RegionActor region = (actors[i] = new RegionActor(memoryAddress + startPos, (int) maxSize));
region.accumulate(); region.start(); // start processing
startPos += maxSize; startPos += maxSize;
} }
final RecordMap output = new RecordMap(); // output to merge all regions final RecordMap output = new RecordMap(); // output to merge all records
for (RegionActor actor : actors) { for (RegionActor actor : actors) {
final RecordMap partial = actor.get(); // blocks until get the result final RecordMap partial = actor.get(); // blocks until get the result
output.merge(partial); output.merge(partial);
// System.out.println("collisions: " + partial.collision);
} }
// sort and print the result // sort and print the result
final TreeMap<String, String> sorted = new TreeMap<>(); final TreeMap<String, String> sorted = new TreeMap<>();
output.forEach(key -> sorted.put(key.toString(), key.measurements())); output.forEach(key -> {
sorted.put(key.toString(), key.measurements());
});
System.out.println(sorted); System.out.println(sorted);
System.out.close(); // closing the stream will trigger the main process to pick up the output early
} }
} }