Add 1brc solution by @makohn (#544)
This commit is contained in:
parent
6cf6da0c17
commit
2be84e09ee
19
calculate_average_makohn.sh
Executable file
19
calculate_average_makohn.sh
Executable file
@ -0,0 +1,19 @@
|
||||
#!/bin/sh
|
||||
#
|
||||
# Copyright 2023 The original authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
JAVA_OPTS="--enable-preview"
|
||||
java $JAVA_OPTS --class-path target/average-1.0.0-SNAPSHOT.jar dev.morling.onebrc.CalculateAverage_makohn
|
287
src/main/java/dev/morling/onebrc/CalculateAverage_makohn.java
Normal file
287
src/main/java/dev/morling/onebrc/CalculateAverage_makohn.java
Normal file
@ -0,0 +1,287 @@
|
||||
/*
|
||||
* Copyright 2023 The original authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package dev.morling.onebrc;
|
||||
|
||||
import java.lang.foreign.Arena;
|
||||
import java.lang.foreign.MemorySegment;
|
||||
import java.lang.foreign.ValueLayout;
|
||||
import java.nio.ByteBuffer;
|
||||
import java.nio.channels.FileChannel;
|
||||
import java.nio.charset.StandardCharsets;
|
||||
import java.nio.file.Paths;
|
||||
import java.nio.file.StandardOpenOption;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collection;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
//
|
||||
// This implementation is partially inspired by
|
||||
//
|
||||
// - GavinRay97: 1BRC in Kotlin (memory mapping, chunking) | https://github.com/gunnarmorling/1brc/discussions/154
|
||||
// - dannyvankooten: 1BRC in C (integer parsing, linear probing) | https://github.com/gunnarmorling/1brc/discussions/46
|
||||
//
|
||||
public class CalculateAverage_makohn {
|
||||
|
||||
private static final String FILE = "./measurements.txt";
|
||||
|
||||
private static class Measurement implements Comparable<Measurement> {
|
||||
final String city;
|
||||
int min;
|
||||
int max;
|
||||
int count = 1;
|
||||
int sum;
|
||||
|
||||
Measurement(String city, int val) {
|
||||
this.city = city;
|
||||
this.min = val;
|
||||
this.max = val;
|
||||
this.sum = val;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return STR."\{city}=\{round(min)}/\{round((1.0 * sum) / count)}/\{round(max)}";
|
||||
}
|
||||
|
||||
private double round(double value) {
|
||||
return Math.round(value) / 10.0;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int compareTo(Measurement other) {
|
||||
return this.city.compareTo(other.city);
|
||||
}
|
||||
}
|
||||
|
||||
// Convert a given byte array of temperature data to an int value
|
||||
// Since the temperate values only have one decimal, we can use integer arithmetic until the end
|
||||
//
|
||||
// buffer: [..., '-', '1', '9', '.', '7', ...]
|
||||
// -------------> offset
|
||||
// ............ = s
|
||||
//
|
||||
// We initialize a "pointer" s with the offset. Depending on whether the first char is a '-' or not, we set the
|
||||
// sign and increment the pointer.
|
||||
//
|
||||
// Then we only have to distinguish between one-digit and two-digit numbers.
|
||||
// Depending on that, we set an index for the respective parts of the number.
|
||||
//
|
||||
private static int toInt(byte[] in, int offset) {
|
||||
int sign = 1;
|
||||
int s = offset;
|
||||
if (in[s] == '-') {
|
||||
sign = -1;
|
||||
s++;
|
||||
}
|
||||
|
||||
if (in[s + 1] == '.')
|
||||
return sign * ((in[s] - '0') * 10 + (in[s + 2] - '0'));
|
||||
|
||||
return sign * ((in[s] - '0') * 100 + (in[s + 1] - '0') * 10 + (in[s + 3] - '0'));
|
||||
}
|
||||
|
||||
// 10_000 distinct station names as per specification
|
||||
// We use the next power of two (2^14 = 16384) to allow for bit-masking our hash (instead of using modulo)
|
||||
private static final int MAX_STATIONS = 2 << 14;
|
||||
|
||||
// Twice as big as the maximum number of stations
|
||||
private static final int MAP_CAPACITY = MAX_STATIONS * 2;
|
||||
|
||||
// We start at 1 to allow for checking our hash-index map for > 0
|
||||
private static final int RES_FIRST_INDEX = 1;
|
||||
|
||||
private static class ResultMap {
|
||||
final int[] map = new int[MAP_CAPACITY]; // hash -> index
|
||||
final Measurement[] measurements = new Measurement[MAX_STATIONS]; // index -> measurement
|
||||
private int lastIndex = 0;
|
||||
|
||||
private void put(int hash, Measurement measurement) {
|
||||
lastIndex++;
|
||||
measurements[lastIndex] = measurement;
|
||||
map[hash] = lastIndex;
|
||||
}
|
||||
|
||||
private boolean contains(int hash) {
|
||||
return map[hash] > 0;
|
||||
}
|
||||
|
||||
private Measurement get(int hash) {
|
||||
return measurements[map[hash]];
|
||||
}
|
||||
}
|
||||
|
||||
// We use linear probing as our hash-collision strategy
|
||||
//
|
||||
// We use MAP_CAPACITY - 1 as a bitmask to force the hash to be lower than our capacity
|
||||
// Let's consider a hash 16390. If our capacity is 2^14 = 16384, the hash is out of bounds.
|
||||
//
|
||||
// 16390 : 100000000000110
|
||||
// 16383 : 011111111111111
|
||||
// ....... 000000000000110 = 3
|
||||
private static int linearProbe(ResultMap res, String key) {
|
||||
var hash = key.hashCode() & (MAP_CAPACITY - 1);
|
||||
while (res.map[hash] > 0 && !(res.measurements[res.map[hash]].city.equals(key))) {
|
||||
hash = (hash + 1) & (MAP_CAPACITY - 1);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
|
||||
// Custom Quicksort implementation, seems to be slightly faster than Arrays.sort
|
||||
private static void quickSort(Measurement[] arr, int begin, int end) {
|
||||
if (begin < end) {
|
||||
final var partitionIndex = partition(arr, begin, end);
|
||||
|
||||
quickSort(arr, begin, partitionIndex - 1);
|
||||
quickSort(arr, partitionIndex + 1, end);
|
||||
}
|
||||
}
|
||||
|
||||
private static int partition(Measurement[] arr, int begin, int end) {
|
||||
final var pivot = arr[end];
|
||||
int i = (begin - 1);
|
||||
|
||||
for (int j = begin; j < end; j++) {
|
||||
if (arr[j].compareTo(pivot) <= 0) {
|
||||
i++;
|
||||
final var tmp = arr[i];
|
||||
arr[i] = arr[j];
|
||||
arr[j] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
final var tmp = arr[i + 1];
|
||||
arr[i + 1] = arr[end];
|
||||
arr[end] = tmp;
|
||||
|
||||
return i + 1;
|
||||
}
|
||||
|
||||
private static Collection<ByteBuffer> getChunks(MemorySegment memory, long chunkSize, long fileSize) {
|
||||
final var chunks = new ArrayList<ByteBuffer>();
|
||||
var chunkStart = 0L;
|
||||
var chunkEnd = 0L;
|
||||
while (chunkStart < fileSize) {
|
||||
chunkEnd = Math.min((chunkStart + chunkSize), fileSize);
|
||||
// starting from the calculated chunkEnd, seek the next newline to get the real chunkEnd
|
||||
while (chunkEnd < fileSize && (memory.getAtIndex(ValueLayout.JAVA_BYTE, chunkEnd) & 0xFF) != '\n')
|
||||
chunkEnd++;
|
||||
// we have found our chunk boundaries, add a slice of memory with these boundaries to our list of chunks
|
||||
if (chunkEnd < fileSize)
|
||||
chunks.add(memory.asSlice(chunkStart, chunkEnd - chunkStart + 1).asByteBuffer());
|
||||
else
|
||||
// special case: we are at the end of the file
|
||||
chunks.add(memory.asSlice(chunkStart, chunkEnd - chunkStart).asByteBuffer());
|
||||
|
||||
// next chunk
|
||||
chunkStart = chunkEnd + 1;
|
||||
}
|
||||
return chunks;
|
||||
}
|
||||
|
||||
// Station name: <= 100 bytes
|
||||
// Temperature: <= 5 bytes
|
||||
//
|
||||
// Semicolon and new line are ignored
|
||||
private static final int MAX_BYTES_PER_ROW = 105;
|
||||
|
||||
private static ResultMap processChunk(ByteBuffer chunk) {
|
||||
final var map = new ResultMap();
|
||||
final var buffer = new byte[MAX_BYTES_PER_ROW];
|
||||
var i = 0;
|
||||
var delimiter = 0;
|
||||
// Process the chunk byte by byte and store each line in buffer
|
||||
while (chunk.hasRemaining()) {
|
||||
final var c = chunk.get();
|
||||
// System.out.println((char) (c & 0xFF));
|
||||
switch (c & 0xFF) {
|
||||
// Memorize the position of the semicolon, such that we can divide the buffer afterward
|
||||
case ';' -> delimiter = i;
|
||||
// If we encounter newline, we can do the actual calculations for the current line
|
||||
case '\n' -> {
|
||||
final var key = new String(buffer, 0, delimiter, StandardCharsets.UTF_8);
|
||||
final var value = toInt(buffer, delimiter);
|
||||
final var hash = linearProbe(map, key);
|
||||
if (map.contains(hash)) {
|
||||
final var current = map.get(hash);
|
||||
current.min = Math.min(current.min, value);
|
||||
current.max = Math.max(current.max, value);
|
||||
current.count++;
|
||||
current.sum += value;
|
||||
}
|
||||
else {
|
||||
map.put(hash, new Measurement(key, value));
|
||||
}
|
||||
i = 0;
|
||||
delimiter = 0;
|
||||
}
|
||||
default -> {
|
||||
buffer[i] = c;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return map;
|
||||
}
|
||||
|
||||
// File size is approximately 13 GB, ByteBuffer has a 2 GB limit
|
||||
// Chunks should have a maximum size of approximately 13 GB / 8 = 1.625 GB
|
||||
private static final int MIN_NUMBER_THREADS = 8;
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
final var numProcessors = Math.max(Runtime.getRuntime().availableProcessors(), MIN_NUMBER_THREADS);
|
||||
// memory-map the input file
|
||||
try (final var channel = FileChannel.open(Paths.get(FILE), StandardOpenOption.READ)) {
|
||||
final var fileSize = channel.size();
|
||||
final var chunkSize = (fileSize / numProcessors);
|
||||
final var mappedMemory = channel.map(FileChannel.MapMode.READ_ONLY, 0, fileSize, Arena.global());
|
||||
// process the mapped data concurrently in chunks. Each chunk is processed on a dedicated thread
|
||||
final var chunks = getChunks(mappedMemory, chunkSize, fileSize);
|
||||
final var processed = chunks
|
||||
.parallelStream()
|
||||
.map(CalculateAverage_makohn::processChunk)
|
||||
.collect(Collectors.toList()); // materialize and thus synchronize
|
||||
// merge the results, we can initialize with the first result, to avoid redundant probing
|
||||
final var first = processed.removeFirst();
|
||||
final var res = processed
|
||||
.stream()
|
||||
.reduce(first, (acc, partial) -> {
|
||||
for (int i = RES_FIRST_INDEX; i <= partial.lastIndex; i++) {
|
||||
final var value = partial.measurements[i];
|
||||
final var hash = linearProbe(acc, value.city);
|
||||
if (acc.contains(hash)) {
|
||||
final var cur = acc.get(hash);
|
||||
cur.min = Math.min(cur.min, value.min);
|
||||
cur.max = Math.max(cur.max, value.max);
|
||||
cur.count += value.count;
|
||||
cur.sum += value.sum;
|
||||
}
|
||||
else {
|
||||
acc.put(hash, value);
|
||||
}
|
||||
}
|
||||
return acc;
|
||||
});
|
||||
|
||||
quickSort(res.measurements, RES_FIRST_INDEX, res.lastIndex);
|
||||
final var sb = new StringBuilder("{");
|
||||
for (int i = RES_FIRST_INDEX; i < res.lastIndex; i++) {
|
||||
sb.append(res.measurements[i]).append(',').append(' ');
|
||||
}
|
||||
sb.append(res.measurements[res.lastIndex]).append('}');
|
||||
System.out.println(sb);
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user